

Power Measurement
Infrastructures and Power
Analysis of an Android

based smartphone
M.Sc. Program: Technologies and Infrastructures for Broadband Applications and Services

Christos Petropoulos

3/24/2016

Reviewed by: Nickolaos Voros

 Georgios Keramidas

This thesis includes the steps to build a functional infrastructure to collect and process the performance

and power figures and builds a power model based on the gathered measurements. The

implementation will target Android based smartphones.

ii

M.Sc. Program: Technologies and Infrastructures for Broadband Applications

and Services

Approved by a three-member examination Committee

Antirio ________________________

 EVALUATION COMMITTEE

1. _________________________________ ________________

2. _________________________________ ________________

3. _________________________________ ________________

 (Full name) (Sign)

iii

Abstract

Nowadays, user needs for mobile solutions are growing up rapidly, because of the rapidly

grow of needs for speed, entertainment and mobility at wireless communication. Manufacturers

are facing huge challenges to make devices with enough power efficiency that cover these needs

for energy. To improve the energy-efficiency of mobile devices, the engineers need appropriate

tools. One method to estimate energy consumption of smartphone devices (i.e. android phones)

is Energy Profiling (for example, using reference implementation - Android Power Profiles).

This method allows the energy consumption estimation online, i.e. without using any external

devices, while using reference data obtained via prior using of offline measurements tools. This

is a good method for application developers to improve their applications to be faster with less

energy consumption. Another method is the method of offline measurements which usually done

by using external measuring device with a “reference” device for testing. It is even

recommended to measure with a “fake” test battery, which is just source of direct current with

fixed level of voltage. This approach helps to minimize interference of battery properties on

measured values.

This thesis describes the steps to build a functional infrastructure to collect and process the

performance and power figures and builds a power model based on the gathered measurements.

The implementation will target Android based platform.

iv

i. Table of Contents

Abstract ... 2-iii

1. Introduction ... 1

1.1 Approach methods.. 1

1.2 Work flow packages ... 2

2. Research ... 3

2.1 Battery Capacity [7] ... 3

2.2 Measuring Voltage & Amperage [8] ... 4

2.3 Measurement equipment .. 5

2.3.1 About Yoctopuce [4] .. 5

2.3.2 Yoctopuce Yocto-Amp USB Electrical Sensor .. 7

2.3.3 Connecting Ammeter to the Device .. 7

2.4 Android OS [9] .. 8

2.4.1 Android SDK .. 8

2.4.2 Using Internal and Hidden APIs ... 9

2.4.3 Root Access .. 9

2.4.4 Android Power Profiles [1] .. 10

3. Benchmarking: What has been measured and why ... 10

3.1 Benchmarking .. 10

3.2 Scenarios without data transfer .. 11

3.3 Scenarios with data transfer ... 12

4. How the measurements have taken place .. 15

4.1 Infrastructure setup step by step ... 15

4.2 Measurement Environment preparation step by step ... 16

4.2.1 Preparing electrical sensor logging system ... 16

v

4.2.2 Prerequisites device setup [10].. 18

4.2.3 Preparing under android test device .. 19

4.2.4 Prepare computer to log from ammeter .. 22

4.2.5 Execute the measurement experiment on the device .. 25

5. Results analysis and graphs presentation... 25

5.1 Measurements Results Part I .. 26

5.1.1 Send DOC file through Bluetooth i/f .. 27

5.1.2 Compression of DOC file and transfer through Bluetooth i/f................................. 27

5.1.3 Send JPG file through Bluetooth i/f .. 28

5.1.4 Compression of JPG file and transfer through Bluetooth i/f 28

5.1.5 Send MOV file through Bluetooth i/f ... 29

5.1.6 Compression of MOV file and transfer through Bluetooth i/f 29

5.1.7 Send MP4 file through Bluetooth i/f ... 30

5.1.8 Compression of MP4 file and transfer through Bluetooth i/f 30

5.1.9 Send OGG file through Bluetooth i/f .. 31

5.1.10 Compression of OGG file and transfer through Bluetooth i/f 31

5.1.11 Send PDF file through Bluetooth i/f ... 32

5.1.12 Compression of PDF file and transfer through Bluetooth i/f 32

5.1.13 WiFi on Idle state and display brightness on 60% for 120sec 33

5.1.14 WiFi on Idle state and display brightness on 60% for 1200sec 33

5.1.15 Send Doc file through WiFi i/f ... 34

5.1.16 Compression of Doc file and transfer through WiFi i/f .. 34

5.1.17 Send JPG file through WiFi i/f ... 35

5.1.18 Compression of JPG file and transfer through WiFi i/f .. 35

5.1.19 Send MOV file through WiFi i/f ... 36

vi

5.1.20 Compression of MOV file and transfer through WiFi i/f 36

5.1.21 Send MP4 file through WiFi i/f .. 37

5.1.22 Compression of MP4 file and transfer through WiFi i/f ... 37

5.1.23 Send OGG file through WiFi i/f ... 38

5.1.24 Compression of OGG file and transfer through WiFi i/f .. 38

5.1.25 Send PDF file through WiFi i/f ... 39

5.1.26 Compression of PDF file and transfer through WiFi i/f ... 39

5.1.27 Summarized measurements results Part I ... 40

5.2 Measurements Results Part II ... 42

5.2.1 Bluetooth associated to network for 300sec ... 42

5.2.2 Bluetooth associated to network for 5sec ... 43

5.2.3 Bluetooth associated to network for 60sec ... 43

5.2.4 Bluetooth not associated to network for 5sec ... 44

5.2.5 Bluetooth not associated to network for 60sec ... 44

5.2.6 Bluetooth not associated to network for 300sec ... 45

5.2.7 Boot loading .. 45

5.2.8 Display off with suspend mode on for 180sec .. 46

5.2.9 Display off for 180sec ... 46

5.2.10 Display on with Suspend mode on (Brightness 100%) for 180sec 47

5.2.11 Display on with Suspend mode on (Brightness 25%) for 180sec 47

5.2.12 Display on with Suspend mode on (Brightness 4%) for 180sec 48

5.2.13 Display on with Suspend mode on (Brightness 50%) for 180sec 48

5.2.14 Display on with Suspend mode on (Brightness 75%) for 180sec 49

5.2.15 Display on (Brightness 100%) for 180sec .. 49

5.2.16 Display on (Brightness 25%) for 180sec .. 50

vii

5.2.17 Display on (Brightness 4%) for 180sec .. 50

5.2.18 Display on (Brightness 75%) for 180sec .. 51

5.2.19 Display on (Brightness 50%) for 180sec .. 51

5.2.20 WiFi associated to network for 300sec ... 52

5.2.21 WiFi associated to network for 5sec ... 52

5.2.22 WiFi associated to network for 60sec ... 53

5.2.23 WiFi not associated to network for 300sec ... 53

5.2.24 WiFi not associated to network for 5sec ... 54

5.2.25 WiFi not associated to network for 60sec ... 54

5.2.26 Summarized measurements results Part II .. 55

6. Conclusions ... 56

7. Future Research-Work ... 57

8. Bibliography - References ... 57

9. Measurements source code .. 58

8.1 Matlab script for extracting results... 58

8.2 Script: take_picture.py ... 59

8.3 Script: bluetooth_not_5_s.py ... 60

8.4 Script: bluetooth_not_5_m.py .. 60

8.5 Script: bluetooth_not_60_s.py ... 60

8.6 Script: email.py .. 61

8.7 Script: brightness_2.py ... 61

8.8 Script: brightness_1.py ... 62

8.9 Script: brightness_3.py ... 62

8.10 Script: wifi_not_assoc_5_sec.py .. 62

8.11 Script: wifi_not_assoc_5_min.py ... 63

viii

8.12 Script: wifi_not_assoc_60_sec.py .. 63

8.13 Script: wifi_5_m.py .. 64

8.14 Script: wifi_5.py ... 64

8.15 Script: wifi_60.py ... 65

10. Table of Figures ... 65

11. Table of Tables .. 67

1

1. Introduction

Nowadays, mobile devices with mobile operating systems consume a lot of energy. Users

are forced to charge their devices at least once a day. To improve user experience on mobile

devices, developers/engineers try to optimize energy consumption of their applications and

hardware components. This thesis focuses on building a functional infrastructure to collect and

process the performance and power figures and building a power model based on the gathered

measurements.

1.1 Approach methods

There are two (2) power consumption measurement approaches, online and offline. Online

measurements are estimations done programmatically by software on device based on some

values pulled from power profile of hardware of the Android device [2]. Therefore, online

measurements usually have done by using results of reference offline measurements. This

method consists in pulling per application statistics about component usage of mobile device

from system service (android.os.BatteryStats). This service logs time of component usage by

applications (in milliseconds) in system journal. This is a good technique for application

developers.

Offline measurements, usually, done by using external measuring device. It is even

recommended to measure with a “fake” test battery, which is a source of direct current with fixed

level of voltage. This approach helps to minimize interference of battery properties on measured

values.

In this thesis is followed offline approach. The reason is that android operating system is

evolved rapidly and new releases are published in short period of time where online way of

measurement needs to be adapted. Another problem is that online measurement is based on

power profile that manufacturer is providing for each component which may not be reliable,

because manufacturers may give "fake" values for marketing purposes. These values may be

statistic values, which do not fulfill the exact environment or component conditions.

2

Following the offline approach (hardware-based), the average power consumption for each

hardware component based on “fake” battery current measuring will be measured. It will lead to

deriving energy profile for this device. Scripts on devices will execute series of predefined tests

(component test scenarios) against certain components of the device, while a digital ammeter

will be collecting power consumption of the device’s component (in mA).

In a commercial device (not to a laboratory one), hardware components cannot operate

fully isolated as result every measurement is aggregated power by consumption of a number of

device components. The approach recommended by main vendor of Android platform [1], is to

subtract “idle state” energy consumption of device from energy consumption of devices in

scenario when certain component is loaded on certain level. Anyhow, some components always

operate and it is not possible to switch them off (i.e. CPU). Power consumption calculation of

this type of components, may follow an algebraic linear equations system solution, consisting of

sum of power consumptions of number of components and total power consumption of device in

different scenario. An important issue is application isolation which is very difficult to be solved.

However, it’s not possible to ensure that other applications (e.g. background services) are not

using CPU too.

The use of “fake battery” will help to validate the measuring because it provides stable

voltage to the device, instead of a real battery which voltage is not stable in time.

1.2 Work flow packages

Work flow packages mean the way that this thesis will be divided. It may be divided into

four parts:

• Investigating the ways to collect/store measurements and choosing the appropriate

hardware.

• Investigating possibilities of the Android Platform to control power states of the

device and components.

• Implementing software to automate testing processes.

• And the way to analyze results.

3

2. Research

In this section will be described the prerequisites and some introductions to basic

electronics, which are needed to develop a measurement infrastructure. It is important for the

reader to be familiar with the basic knowledge of electronics. At the next subsections of this

thesis, reader can find:

• A very small introduction to main electronic concepts like battery capacity and measuring

voltage and amperage.

• Choosing hardware for test environment

• Discussing Power Model (Energy Profiles)

2.1 Battery Capacity [7]

A battery's capacity is the amount of electric charge it can deliver at the rated voltage. The

more electrode material contained in the cell the greater its capacity. A small cell has less

capacity than a larger cell with the same chemistry, although they develop the same open-circuit

voltage. Capacity is measured in units such as amp-hour (Ah).

The rated capacity of a battery is usually expressed as the product of 20 hours multiplied

by the current that a new battery can consistently supply for 20 hours at 68 °F (20 °C), while

remaining above a specified terminal voltage per cell. For example, a battery rated at 100 Ah can

deliver 5 A over a 20-hour period at room temperature.

The fraction of the stored charge that a battery can deliver depends on multiple factors,

including battery chemistry, the rate at which the charge is delivered (current), the required

terminal voltage, the storage period, ambient temperature and other factors.

The higher the discharge rate, the lower the capacity. The relationship between current,

discharge time and capacity for a lead acid battery is approximated (over a typical range of

current values) by Peukert's law:

4

Where:

• QP is the capacity when discharged at a rate of 1 amp.

• I is the current drawn from battery (A).

• t is the amount of time (in hours) that a battery can sustain.

• k is a constant around 1.3.

Batteries that are stored for a long period or that are discharged at a small fraction of the

capacity lose capacity due to the presence of generally irreversible side reactions that consume

charge carriers without producing current. This phenomenon is known as internal self-discharge.

Furthermore, when batteries are recharged, additional side reactions can occur, reducing capacity

for subsequent discharges. After enough recharges, in essence all capacity is lost and the battery

stops producing power.

Internal energy losses and limitations on the rate that ions pass through the electrolyte

cause battery efficiency to vary. Above a minimum threshold, discharging at a low rate delivers

more of the battery's capacity than at a higher rate.

Installing batteries with varying Ah(ampere-hour) ratings does not affect device operation

(although it may affect the operation interval) rated for a specific voltage unless load limits are

exceeded. High-drain loads such as digital cameras can reduce total capacity, as happens with

alkaline batteries. For example, a battery rated at 2 Ah for a 10- or 20-hour discharge would not

sustain a current of 1A for a full two hours as its stated capacity implies.

2.2 Measuring Voltage & Amperage [8]

When measuring a battery voltage there can be a difference when the battery is under load

and not under load. An example of an under load battery example is, a battery is under load when

it is installed in a device and the device is turned on. For devices such as smartphones, which do

not draw much current from the battery, the battery voltage can typically be accurately measured

when the battery is not under load. Anyhow, for larger batteries in which the current draw can be

higher, such as car batteries, the battery voltage can drop dramatically when it is under load. To

measure voltage of the battery with voltmeter it is possible simply make a circuit with battery

and voltmeter.

5

In order to measure the current, it is needed to connect a load to the battery, which means

that battery should be connected to a working circuit1 and power it on. Then connect an ammeter

in series with the load. This measurement will give the current flowing and not the total

produced current of the battery.

Afterwards, remove the battery from the device and observe it. There are three to four pin

connectors which are attached to device. The main pin connectors that are used for measuring

voltage and current are the pins which are marked with plus (“+”) and minus (“-“). The rest pin

connectors (one or two) are management communication or/and temperature sensor (thermistor)

connectors accordingly.

2.3 Measurement equipment

A digital ammeter with USB or RS-232 interface is needed, in order to measure flowing

current during continuous period of time and keep log files with multiple values. Have in mind

that the chosen equipment must have public and documented API. This is important for

controlling the ammeter and making precise and custom measurements. According to

smartphone manufactures the flowing current in devices varies between ~5mA in standby mode

up to 300-400mA in full load.

In this thesis, a small and specialized device is going to be used, which is cheap and has

only one function (to measure amperage) with open source management software available. This

device is Yoctopuce Yocto-Amp [5] device is used. A researcher has the availability to choose in

many professional tools where they provide many options for doing electrical equipment

measurements. The problem is that these tools are usually complicated and integrating them with

customization, requires a significant effort due to commercial closed source software for

manipulation.

2.3.1 About Yoctopuce [4]

Yoctopuce is a company based in Geneva, Switzerland. It has been founded by three

engineers with the intent of enabling anyone to create simple systems to automate daily tasks,

1 A working circuit can be a device, a smartphone etc.

6

implement original ideas or simply build home automation gadgets [4]. Yoctopuce products

include many different types of devices: electrical sensors, environmental sensors, actuators,

displays, etc. All devices may be connected with another device such as PC with USB interface

and have internal flash memory to memorize measurement results.

The software toolbox called VirtualHub is available for Yoctopuce USB devices [5]. It

allows to:

• configure and test Yoctopuce devices

• remotely control Yoctopuce devices through network

• control Yoctopuce devices with languages which do not provide a direct access to USB

devices, such as JavaScript and PHP

It can either be used in command-line, or started as a service/daemon. The VirtualHub

software is available for Windows, Mac OS X and Linux (both Intel and ARM). It can be freely

downloaded from Yoctopuce website. For unmanaged languages such as C/C++ native libraries

are available and allow to control devices directly without using VirtualHub middleware [5].

Also, there is so-called “Command Line API” available. This API consists of pack of

precompiled native executable binaries, which have only one function, i.e.they represents one

function from VirtualHub. Part of this API, YCurrent application, is used in this thesis to

communicate with Yoctopuce device.

Documentation for both VirtualHub software and API libraries is also available for free.

Example usage of YCurrent consists from the following call in terminal:

C:\> YCurrent.exe YAMPMK01-12C90.current1 get_currentValue.

Here YCurrent.exe is Windows binary file, YAMPMK01-12C90 is logical name of

connected device (serial number by default), current1 is logical name of thesensor and

get_currentValue is API function, which returns measured amperage.

7

2.3.2 Yoctopuce Yocto-Amp USB Electrical Sensor

This device is a digital USB ammeter that allows you to measure current automatically. It

can provide quite precise digital measures (2 mA, 1%). It works with direct current (DC) as well

as alternating current (AC) for which it provides the RMS value (5 mA or 3%).

This device is isolated, which means that the sensing part

is electrically disconnected from the USB part: you can

measure any current including from the mains, without risk of

frying your computer.

The modules provides immediate reading on USB, and

can also store measures on the device internal flash for later

retrieval when connected again with a USB. This device can be connected directly to an Ethernet

network using a YoctoHub-Ethernet, or to a WiFi network using a YoctoHub-Wireless-g.

2.3.3 Connecting Ammeter to the Device

You must know that the behavior of an ammeter is similar to the behavior of an electrical

wire: it merely lets the current go through while measuring it. Therefore, an ammeter must

always be connected in series, never in parallel. Always pay attention to how you connect your

Yocto-Amp. If you connect it in parallel, you are going to create a short circuit, to destroy your

Yocto-Amp, to damage your power supply, and you can even start a fire.

Figure 2 Connecting Ammeter to the phone

Figure 1 Yocto-Amp USB Electrical

Sensor

8

2.4 Android OS [9]

Android is a mobile operating system (OS) currently developed by Google, based on the

Linux kernel and designed primarily for touchscreen mobile devices such as smartphones and

tablets. Android's user interface is mainly based on direct manipulation, using touch gestures that

loosely correspond to real-world actions, such as swiping, tapping and pinching, to manipulate

on-screen objects, along with a virtual keyboard for text input. In addition to touchscreen

devices, Google has further developed Android TV for televisions, Android Auto for cars, and

Android Wear for wrist watches, each with a specialized user interface. Variants of Android are

also used on notebooks, game consoles, digital cameras, and other electronics.

Initially developed by Android, Inc., which Google bought in 2005, Android was unveiled

in 2007, along with the founding of the Open Handset Alliance – a consortium of hardware,

software, and telecommunication companies devoted to advancing open standards for mobile

devices. As of July 2013, the Google Play store has had over one million Android applications

("apps") published, and over 50 billion applications downloaded.

Android's source code is released by Google under open source licenses, although most

Android devices ultimately ship with a combination of open source and proprietary software,

including proprietary software required for accessing Google services. Android is popular with

technology companies that require a ready-made, low-cost and customizable operating system

for high-tech devices. Its open nature has encouraged a large community of developers and

enthusiasts to use the open-source code as a foundation for community-driven projects, which

add new features for advanced users or bring Android to devices originally shipped with other

operating systems.

In next subsections, a small introduction to basic knowledge of Android tools and utilities

is described.

2.4.1 Android SDK

Android SDK is a software development kit, which allows to developers to create

applications for the Android platform. It includes sample projects with the source, development

tools, an emulator, and required libraries to build Android applications. Applications are written

9

using Java programming language and run on Dalvik, a custom virtual machine designed for

embedded use which runs on top of a Linux kernel.

Figure 3 Android architecture

2.4.2 Using Internal and Hidden APIs

Android has two types of APIs that are not accessible via SDK. The internal API is located

in package com.android.internal. The Hidden API is a collection of classes and functions that are

marked with @hide javadoc attribute. Hidden API, even if it is referred as one API, it is a

collection of small hidden APIs. A nice guide how to use these APIs is located here:

https://devmaze.wordpress.com/2011/01/18/using-com-android-internal-part-1-introduction/

2.4.3 Root Access

Root access is a “jailbreak” for Android and allows users to dive deeper into sub-system.

Essentially, it’ll allow users to access the entire operating system and be able to customize just

about anything on their Android. With root access, user can get around any restrictions that the

manufacturer or carrier may have applied. User can run more applications, overclock or

underclock the processor, and replace the manufacture firmware. The process requires users to

back up current software and flash (install) a new custom ROM (modified version of Android).

10

2.4.4 Android Power Profiles [1]

Within a power profile, power consumption is specified in milliamps (mA) of current draw

at a nominal voltage and can be a fractional value specified in microamps (uA). The value should

be the mA consumed at the battery and not a value applicable to a power rail that does not

correspond to current consumed from the battery.

For example, a display power profile specifies the mA of current required to keep the

display on at minimum brightness and at maximum brightness. To determine the power cost (i.e

the battery drained by the display component) of keeping the display on, the framework tracks

the time spent at each brightness level, then multiplies those time intervals by an interpolated

display brightness cost.

The framework also multiplies the CPU time for each application by the mA required to

run the CPU at a specific speed. This calculation establishes a comparative ranking of how much

battery an application consumes by executing CPU code (time as the foreground app and total

time including background activity are reported separately).

3. Benchmarking: What has been measured and why

This thesis will describe the most common scenarios of power consumption measurements

on a mobile android device. These measurements ami to individual device components such as

LCD Display, Bluetooth and WiFi. These scenarios are described in subsections 3.2 and 3.3.

3.1 Benchmarking

General, benchmark is the act of running a software in order to assess the relative

performance. In this thesis, benchmarking is the process of running predefined set of test cases to

derive Energy Profile under different load profiles. For more precise and consistent results, the

same test cases should be run multiple times. In our case, during run of these test cases,

measurement software is continuously pulling the current amperage values from measuring

device and calculates the power values and stores them into log file(s).

11

To reduce the influence of the random factors, after analyzing of values, some values for

certain load profile maybe filtered out. Then, the average and the standard deviation for the rest

results are re-calculated. This thesis is not covering the best way of calculating the average

across the time series values in power consumption benchmarking case, which is a subject for

future research.

3.2 Scenarios without data transfer

 Test cases Exec. Time

(sec)

Comments

1 Display off 180 Exception: Suspend mode is active

2 Display on with brightness 4% 180 Exception: Suspend mode is active

3 Display on with brightness 25% 180 Exception: Suspend mode is active

4 Display on with brightness 50% 180 Exception: Suspend mode is active

5 Display on with brightness 75% 180 Exception: Suspend mode is active

6 Display on with brightness 100% 180 Exception: Suspend mode is active

7 Display off 180

8 Display on with brightness 4% 180

9 Display on with brightness 25% 180

10 Display on with brightness 50% 180

11 Display on with brightness 75% 180

12 Display on with brightness 100% 180

13 Wifi not associated to network 300

14 Wifi not associated to network 5

15 Wifi not associated to network 60

16 Wifi associated to network 300 without data transfer

17 Wifi associated to network 5 without data transfer

18 Wifi associated to network 60 without data transfer

19 BT not associated 300

20 BT not associated 5

21 BT not associated 60

22 BT associated 300 without data transfer

23 BT associated 5 without data transfer

12

24 BT associated 60 without data transfer

25 Boot loading

Table 1 Test cases without data transfer

3.3 Scenarios with data transfer

 Test cases Comments

1 DOC file (*.doc) transfer through BT File size 1,57MB

2 JPG file (*.jpg) transfer through BT File size 1,93MB

3 MOV file (*.mov) transfer through BT File size 9,26MB

4 MP4 file (*.mp4) transfer through BT File size 1,53MB

5 OGG file (*.ogg) transfer through BT File size 3,46MB

6 PDF file (*.pdf) transfer through BT File size 4,95MB

7 DOC Compressed file (*.doc.gz) transfer through BT File size 277KB, compression before send

8 JPG Compressed file (*.jpg.gz) transfer through BT File size 1,92MB, compression before

send

9 MOV Compressed file (*.mov.gz) transfer through

BT

File size 9,26MB, compression before

send

10 MP4 Compressed file (*.mp4.gz) transfer through BT File size 1,51MB, compression before

send

11 OGG Compressed file (*.ogg.gz) transfer through BT File size 576KB, compression before send

12 PDF Compressed file (*.pdf.gz) transfer through BT File size 4,04MB, compression before

send

Table 2 Test cases with data transfer

Described scenarios have been measured with the standards below:

• Boot loading:

o Non radio components active. Radio components are deactivated before boot

Instructions:

� Step 1: Power on device

� Step 2: Deactivate radio components

13

� Step 3: Set time to two (2) minutes for display deactivation from device

settings

� Step 4: Power off device

� Step 5: Start measuring and power on device again

o Non external power is attached on device (USB connected to pc or USB power

plug)

• LCD Display off:

o Device on flight mode (no radio components active)

o Device Suspend mode is deactivated to prevent placing parts of the device in a

low-power or off state. This can affect power consumption of the component

being measured and introduce large variances in power readings as the system

periodically resumes to send alarms, etc [3]

o Display component is deactivated

o Non external power is attached on device (USB connected to pc or USB power

plug)

• LCD Display on:

o Device on flight mode (no radio components active)

o Device Suspend mode is deactivated

o Display component is activated

o Non external power is attached on device (USB connected to pc or USB power

plug)

• WiFi scenarios (without data transfer):

o Device on flight mode and WiFi component active only

o Device Suspend mode is deactivated

14

o Display component is deactivated

o Non external power is attached on device (USB connected to pc or USB power

plug)

• WiFi scenarios (with data transfer):

o Device on flight mode and WiFi component active only

o Device Suspend mode is deactivated

o Display component is activated with brightness ~60%

o Non external power is attached on device (USB connected to pc or USB power

plug)

• Bluetooth scenarios (without data transfer):

o Device on flight mode and BT component active only

o Device Suspend mode is deactivated

o Display component is deactivated

o Non external power is attached on device (USB connected to pc or USB power

plug)

• Bluetooth scenarios (with data transfer):

o Device on flight mode and WiFi component active only

o Device Suspend mode is deactivated

o Display component is activated with brightness ~60%

o Non external power is attached on device (USB connected to pc or USB power

plug)

15

4. How the measurements have taken place

In this section, reader can find information about how to setup the measurement

infrastructure and how to prepare the device. It is prerequisite that reader must be familiar with

scripting (python, matlab, etc), operating systems (command line, drivers, etc.), networking and

basic electronics as it is mentioned in previous sections.

4.1 Infrastructure setup step by step

As it is described in previous section with offline measurement, it is recommended to

measure with a fake battery. This can be achieved with an external power supply (min 5V, 1A)

and a 100kOhms resistor. Below you can see the way how to create a “fake” battery (see Figure

4).

Figure 4 How to create a "fake" battery for a mobile device

The equipment which is used consists of:

• Device under test, a smartphone Samsung Nexus S (Android OS 4.1.2)

• A digital ammeter with usb interface, Yoctopuce Yocto-Amp electrical sensor

• A 100kOhms resistor

• A laboratory power supply

16

After that, you must set your external power supply to 5Volts with 1A current (it depends

on device needs). You can check this by looking to device charger. Then attach the positive

cable of “fake” battery to positive of under test device through Yocto-amp sensor, data and

negative pins accordingly (see Figure 5). Pay attentions when connecting data pin to add in

series a 100kOhms resistor before attaching to the device. Resistor behavior is like thermistor,

and in this case “misleads” the device that the connected battery is “real”.

Figure 5 Infrastructure setup

4.2 Measurement Environment preparation step by step

According to infrastructure step by step guide, user has to follow simple and standard

steps. This is not happening with software preparation; user has to develop/use applications that

are working to every same type of device. Most of the times, the user will face a lot of

compatibility problems or he has to pay a lot money for specialized software and hardware

without covering their needs. On this paragraph, it will be described the way to setup a stable

environment with the use of hardware and software equipment with low cost.

4.2.1 Preparing electrical sensor logging system

Attach the electrical sensor yocto-amp (commonly called ammeter) to pc and check if the

device is working properly by running the demo software (virtual hub). Start the Virtual Hub

software in a command line, open your preferred web browser and enter the URL

http://127.0.0.1:4444. The list of the modules connected to your computer is displayed (see

17

Figure 6). Then following the instructions of the manual, add logical name to the device to help

you to access the device later.

timestamp(mSec) sensorDC(mA) sensorAC(mA) Power(mW)

1453400805737.117 209.0 0.0 1028.28

1453400805739.117 209.0 0.0 1028.28

1453400805739.117 209.0 0.0 1028.28

1453400805740.118 209.0 0.0 1028.28

1453400805740.118 209.0 0.0 1028.28

1453400805740.118 209.0 0.0 1028.28

1453400805740.118 209.0 0.0 1028.28

1453400805741.119 209.0 0.0 1028.28

1453400805741.119 209.0 0.0 1028.28

1453400805741.119 209.0 0.0 1028.28

1453400805741.119 209.0 0.0 1028.28

…. …. …. ….

Table 3 Measurement CSV sample

Prepare your logging software with the use of device API and save measurement data into

a csv file. The ammeter module provides two instances of the Current function. The current1

input corresponds to the DC current component, while the current2 input corresponds to the AC

current component (RMS). In this case, current1 instance is needed to capture from. It helps to

add an extra column to csv that calculates the power too (see Table 3).

Figure 6 Yoctopuce Virtual Hub software

18

4.2.2 Prerequisites device setup [10]

Before starting to use the device to the test environment, it is important the device to be

rooted. As it is mentioned to previous section, rooting procedure is necessary, in order to have

full access to components and android sub-systems.

 Searching the web, there are many ways to root an android device. In this thesis the way

followed, is without using a computer. It is used the KingoRoot application. Before jumping into

the rooting process, ensure that you got everything right beforehand:

• Device is powered on.

• Recommend full charged battery or at least 50% battery level.

• Internet connection necessary (Wi-Fi network suggested).

• Allow installation of apps from unknown sources.

Step 1: download KingoRoot.apk

If Chrome has warned you about KingoRoot.apk,
click "OK" to proceed. Then find the file via File Explorer
and install it.

Step 2: Install KingoRoot.apk on your device.

If you didn't check "Unknown Sources" in Settings >

Security, then during installation, you will get a prompt

"Install blocked", stating with "For security, your phone is set to block installation of apps

obtained from unknown sources". Just follow phone instructions and install KingoRoot on your

device.

Figure 7 Chrome warning

Figure 8 KingoRoot download site

19

Step 3: Launch "Kingo ROOT" app and start rooting.

Kingo Root is very user-friendly and easy to use. Click "One Click Root" to start the

rooting process.

Step 4: Waiting for a few seconds till the result screen appear.

Step 5: Succeeded or Failed

4.2.3 Preparing under android test device

As mentioned above, the device must be rooted to gain access to hardware drivers, so

additional software is needed. Android Debug Bridge (ADB) allows to user to modify devices

system data via command line connected through USB, WiFi and Bluetooth (Bluetooth

tethering). ADB can be found in Android SDK (under platform-tools folder). Download and

Figure 9 KingoRoot process Figure 10 KingoRoot Succeeded Root

20

extract SDK, then open command line and navigate into the folder you extract it. Then connect

the device via USB, wait device to be recognized from your pc and run:

% See the list of connected devices

$> adb devices

% to get a command line to the device

$> adb shell

Figure 11 ADB Shell

% to become a superuser

$> su

%remount with read/write access to system folders

$> mount -o rw,remount -t ext4 /system /sys

21

%Preventing system suspend

$> echo temporary > /sys/power/wake_lock

Since Android is a Linux based operating system, commands like “ls”, ”cd”, “cat”,

“mkdir”, etc. are available. If there is need for more commands, like “grep”, install Busybox

application and then type $ busybox in the command line (see Figure 12)

Figure 12 Android BusyBox

Manipulation of the Android can be achieved by command line, shell scripts or python

scripts. For the measurements, python scripts are used because of the API provided for Android.

To execute python scripts in an Android platform, the SL4A application must be installed, too.

22

The Scripting Layer for Android, SL4A, is an open source application that allows programs

written in a range of interpreted languages to run on Android platform. It also provides a high

level API, that allows these programs to interact with the Android device, making it easy to do

stuff like accessing sensor data, sending an SMS, rendering user interfaces and so on. SL4A also

supports Perl, Ruby, Lua, BeanShell, JavaScript and Tcl. SL4A is not available in Play Store so

it must be downloaded from the web browser (https://github.com/kuri65536/python-for-

android/blob/master/README.md) and follow the guide that describes the installation process.

4.2.4 Prepare computer to log from ammeter

Yoctopuce Yocto-Amp electrical sensor provides API in many programming languages.

In this thesis, the Python API is used. Because of offline measurement approach, the

measurements are semi-automated. Semi-automated means that the measurements cannot be

fully automated. The reason is that the ammeter logging software needs somehow to be triggered

and any component of the device must be “isolated” (wifi, Bluetooth, etc.). The device must not

be connected through USB because extra current is added (~30mA) on the measurements and

also the device is charged which is not accepted.

Below is the source code of the python script which creates logs all the measurements:

#!/usr/bin/python

-*- coding: utf-8 -*-

import os,sys

import datetime

import time

import csv

from time import sleep

from threading import Thread

add ../../Sources to the PYTHONPATH

Sources contains all needed libraries for connecting the

23

ammeter sensor with python

sys.path.append("Sources")

from yocto_api import *

from yocto_current import *

def die(msg):

 sys.exit(msg+' (check USB cable)')

#This function will run on a thread and writes in log

#file a row every time with a timestamp,sensorDC output,

#sensorAC ouput and the power of DC output only

#(with calculation: Volt*sensorDC.get_currentValue())

def measurement_task():

 while True:

 if not m.isOnline() : die('Module not connected')

 writer.writerow([str(time.time() * 1000),

str(sensorDC.get_currentValue()),

str(sensorAC.get_currentValue()),

str(Volt*sensorDC.get_currentValue())])

errmsg=YRefParam()

#Volts from power supply, is used to calculate the power later…

Volt = 4.92 #Volts from power supply

#Script time execution

execTime = 560 #sec

#Test case scenario

tcName = 'bt_send_pdf_'+ str(execTime) +'s'

#Device name this is changed from VirtualHub software

target='lab1'

#path where the logs will be saved

folder='csv/'

24

now = datetime.datetime.now()

fileName = folder + 'measurement_' + tcName +'_log_' +

now.strftime('%Y%m%d%H%M%S') + '.csv'

print(fileName)

Setup the API to use local USB devices

if YAPI.RegisterHub("usb", errmsg)!= YAPI.SUCCESS:

 sys.exit("init error"+errmsg.value)

if target=='any':

 # retreive any voltage sensor (can be AC or DC)

 sensor = YCurrent.FirstCurrent()

 if sensor is None :

 die('No module connected')

else:

 sensor= YCurrent.FindCurrent(target + '.current1')

we need to retreive both DC and AC voltage from the device.

if sensor.isOnline():

 m = sensor.get_module()

 sensorDC = YCurrent.FindCurrent(m.get_serialNumber() +

'.current1')

 sensorAC = YCurrent.FindCurrent(m.get_serialNumber() +

'.current2')

else:

 die('Module not connected')

#Here starts the measuring process…

with open(fileName, 'w', newline='') as csvfile:

 fieldnames = ['timestamp(mSec)', 'sensorDC(mA)',

'sensorAC(mA)', 'Power(mW)']

25

 writer = csv.writer(csvfile, delimiter='\t')

 writer.writerow(fieldnames)

 print('Consumption Measurements Started!!!')

 print(' (press Ctrl-F6 to exit)')

 t = Thread(target=measurement_task)

 t.daemon = True

 t.start()

 # +15 is used to add some extra time for preparation

 sleep(execTime+15) # 1min: 60, 2min: 120, 3min: 180 ,...

 print('Consumption Measurements Finished!!!')

4.2.5 Execute the measurement experiment on the device

When the computer which is taking the measurements is ready and the under test device

is rooted and suspend mode is disabled, then connect on the device through adb shell. After

that execute your script-scenario (see scripts in section 9), remove usb cable from the device

and start the measurement. Remember to add an idle/sleep time on your scripts in order to

have the appropriate time to remove usb cable or to start any other experiment process you

need. Below is an example, how you can execute a measurement script written in python:

$> am start -a

com.googlecode.android_scripting.action.LAUNCH_BACKGROUND_SCRIPT -n

com.googlecode.android_scripting/.activity.ScriptingLayerServiceLaun

cher -e com.googlecode.android_scripting.extra.SCRIPT_PATH

/sdcard/sl4a/scripts/wifi/wifi_on_off/python/wifi_60.py

5. Results analysis and graphs presentation

This section contains the results analysis and presentation for every test case mentioned in

this thesis with graphs and explanations. Measurement results are separated into two parts.

Measurement results with data modification and transfer through wireless interfaces (part I) and

measurement results with simple scenarios like consumption of display, boot loading etc. (part

26

II). At the end of every part, the explanations of the measurements are located (see sections

5.1.27 and 5.2.26). All measurements took place on a Samsung Google Nexus S with Android

v4.1.2 (Jelly Bean).

Automation software has been developed to help on processing large numbers of CSV

files, extracting and representing the results. In this thesis the automation software for processing

the measurements is written in Matlab scripts. It’s important when logging the measurements to

save the log files with the appropriate name. This will help you to avoid a lot of effort to

adding/changing file names, tittles and labels into charts. An example of file name could be

“Boot_loading.csv”. Below is a matlab script which reads all csv files from a folder and creates a

chart for every measurement. Then, it extracts the file name and adds the appropriate

labels/tittles into the chart and save it as a png file. The label/title and the names of the png files

are extracted from the csv file name. Also the software saves into a text file the minimum, the

maximum and the average consumption (miliwatts) of every measurement log and test case

execution time in minutes too. The results are represented in subsections 5.1 and 5.2. Source

code for test cases and automation software in Matlab is located in section 9.

5.1 2Measurements Results Part I

This section contains measurements where most common used types of files are transferred

through wireless interfaces like WiFi and Bluetooth. This part of measurements is divided into

“two” parts, one part where the files transferred as they are and the second part with the files

transferred compressed. With these scenarios, it is observed which way is better to use for

common file types (such as doc, pdf, jpg, mov etc.) through wireless interface. Should they be

Compressed or not? Should they be transferred via Bluetooth or WiFi?

2 Display components is active with 60% brightness

27

5.1.1 Send DOC file through Bluetooth i/f

Consumption Results (mW) – Execution time 2.28min

Average: 1070.981 Min: 856.080 Max: 1726.920

Figure 13 Doc file transfer through Bluetooth

5.1.2 Compression of DOC file and transfer through Bluetooth i/f

Consumption Results (mW) – Execution time 9.58min

Average: 1017.933 Min: 856.080 Max: 1923.720

Figure 14 Compression of a doc file and transfer through Bluetooth

28

5.1.3 Send JPG file through Bluetooth i/f

Consumption Results (mW) – Execution time 2.2min

Average: 1056.306 Min: 856.080 Max: 1766.280

Figure 15 JPG file transfer through Bluetooth

5.1.4 Compression of JPG file and transfer through Bluetooth i/f

Consumption Results (mW) – Execution time 9.58min

Average: 1024.670 Min: 856.080 Max: 1968

Figure 16 Compression of a JPG file and transfer through Bluetooth

29

5.1.5 Send MOV file through Bluetooth i/f

Consumption Results (mW) – Execution time 7.21min

Average: 1055.287 Min: 856.080 Max: 1840.080

Figure 17 MOV file transfer through Bluetooth

5.1.6 Compression of MOV file and transfer through Bluetooth i/f

Consumption Results (mW) – Execution time 9.58min

Average: 1088.376 Min: 865.920 Max: 2292.720

Figure 18 Compression of a MOV file and transfer through Bluetooth

30

5.1.7 Send MP4 file through Bluetooth i/f

Consumption Results (mW) – Execution time 1.93min

Average: 212.803 Min: 137.760 Max: 669.120

Figure 19 MP4 file transfer through Bluetooth

5.1.8 Compression of MP4 file and transfer through Bluetooth i/f

Consumption Results (mW) – Execution time 4.97min

Average: 1037.843 Min: 856.080 Max: 1948.320

Figure 20 Compression of a MP4 file and transfer through Bluetooth

31

5.1.9 Send OGG file through Bluetooth i/f

Consumption Results (mW) – Execution time 3.30min

Average: 1038.800 Min: 856.080 Max: 1751.520

Figure 21 OGG file transfer through Bluetooth

5.1.10 Compression of OGG file and transfer through Bluetooth i/f

Consumption Results (mW) – Execution time 3.89min

Average: 1054.455 Min: 861 Max: 1943.400

Figure 22 Compression of an OGG file and transfer through Bluetooth

32

5.1.11 Send PDF file through Bluetooth i/f

Consumption Results (mW) – Execution time 4.79min

Average: 229.433 Min: 137.760 Max: 772.440

Figure 23 PDF file transfer through Bluetooth

5.1.12 Compression of PDF file and transfer through Bluetooth i/f

Consumption Results (mW) – Execution time 9.58min

Average: 867.857 Min: 693.720 Max: 1815.480

Figure 24 Compression of a PDF file and transfer through Bluetooth

33

5.1.13 WiFi on Idle state and display brightness on 60% for 120sec

Consumption Results (mW) – Execution time 2.25min

Average: 988.287 Min: 846.240 Max: 1849.920

Figure 25 WiFi on idle state & network associated (display on with brightness 60%) for 2min

5.1.14 WiFi on Idle state and display brightness on 60% for 1200sec

Consumption Results (mW) – Execution time 20.25min

Average: 987.571 Min: 841.320 Max: 2041.800

Figure 26 WiFi on idle state & network associated (display on with brightness 60%) for 20min

34

5.1.15 Send Doc file through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1005.145 Min: 846.240 Max: 1677.720

Figure 27 Doc file transfer through WiFi

5.1.16 Compression of Doc file and transfer through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 831.755 Min: 693.720 Max: 1992.600

Figure 28 Compression of a DOC file and transfer through WiFi

35

5.1.17 Send JPG file through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1018.420 Min: 851.160 Max: 1884.360

Figure 29 JPG file transfer through WiFi

5.1.18 Compression of JPG file and transfer through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 882.888 Min: 693.720 Max: 2046.720

Figure 30 Compression of a JPG file and transfer through WiFi

36

5.1.19 Send MOV file through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1144.098 Min: 856.080 Max: 1997.520

Figure 31 MOV file transfer through WiFi

5.1.20 Compression of MOV file and transfer through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1164.395 Min: 929.880 Max: 2583.000

Figure 32 Compression of a MOV file and transfer through WiFi

37

5.1.21 Send MP4 file through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1017.614 Min: 856.080 Max: 1712.160

Figure 33 MP4 file through WiFi

5.1.22 Compression of MP4 file and transfer through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1132.501 Min: 939.720 Max: 2263.200

Figure 34 Compression of a MP4 file and transfer through WiFi

38

5.1.23 Send OGG file through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1041.669 Min: 861 Max: 1894.200

Figure 35 OGG file transfer through WiFi

5.1.24 Compression of OGG file and transfer through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1153.717 Min: 929.880 Max: 2253.360

Figure 36 Compression of a OGG file and transfer through WiFi

39

5.1.25 Send PDF file through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1180.436 Min: 865.920 Max: 2592.840

Figure 37 PDF file transfer through WiFi

5.1.26 Compression of PDF file and transfer through WiFi i/f

Consumption Results (mW) – Execution time 1.25min

Average: 1139.785 Min: 939.720 Max: 2238.600

Figure 38 Compression of a PDF file and transfer through WiFi

40

5.1.27 Summarized measurements results Part I

All results from sections 5.1.1-5.1.26 have been collected and sorted by file types

scenarios below. Concluding to these results could be done, by taking into consideration the

graphs of the previous sections (see 5.1.1-5.1.26). For the scenarios of this section, the

transmitting distance is the same and in limits of Bluetooth for both interfaces.

Looking the table below (Table 1) and the graphs, the recommended way to send a doc

file is to compress it and send it through WiFi as it is shown to average consumption column.

The max value of consumption shows the compression which is for a short time of period.

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT Doc file 1070.981 856.080 1726.920

BT Doc gzipped file 1017.933 856.080 1923.720

WiFi Doc file 1005.145 846.240 1677.720

WiFi Doc gzipped file 831.755 693.720 1992.600

Table 4 Doc file send through wireless i/f comparison table

In order to send a JPG file (which has a big image size), without compressing it, it would

be better to send it through WiFi, because it is sent faster and consumes less power. For example,

in case of sending of a file with size 2MB through Bluetooth, the average consumption is 0.2

Joules/sec and the transfer is completed in 30sec. On the other hand, sending the same file

through WiFi, the average consumption is 0.3 Joules/sec and the transfer is completed in 10sec.

As a result, WiFi consumption for the whole file transfer is less than Bluetooth. It can also be

applied at Mov and Mp4 file types (see Table 6 and Table 7).

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT JPG file 1056.306 856.080 1766.280

BT JPG gzipped file 1024.670 856.080 1968.000

WiFi JPG file 1018.420 851.160 1884.360

WiFi JPG gzipped file 882.888 693.720 2046.720

Table 5 JPG file send through wireless i/f comparison table

41

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT Mov file 1055.287 856.080 1840.080

BT Mov gzipped file 1088.376 865.920 2292.720

WiFi Mov file 1144.098 856.080 1997.520

WiFi Mov gzipped file 1164.395 929.880 2583.000

Table 6 Mov file send through wireless i/f comparison table

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT Mp4 file 212.803 137.760 669.120

BT Mp4 gzipped file 1037.843 856.080 1948.320

WiFi Mp4 file 1017.614 856.080 1712.160

WiFi Mp4 gzipped file 1132.501 939.720 2263.200

Table 7 Mp4 file send through wireless i/f comparison table

 In case of an Ogg file it is better to compress it and send it through Bluetooth because the

size of the file is reduced up to ~20%.

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT Ogg file 1038.800 856.080 1751.520

BT Ogg gzipped file 1054.455 861.000 1943.400

WiFi Ogg file 1041.669 861.000 1894.200

WiFi Ogg gzipped file 1153.717 929.880 2253.360

Table 8 Ogg file send through wireless i/f comparison table

At the case of a Pdf file, it is better to send it through Bluetooth and not compressed.

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT Pdf file 229.433 137.760 772.440

BT Pdf gzipped 867.857 693.720 1815.480

WiFi Pdf file 1180.436 865.920 2592.840

WiFi Pdf gzipped file 1139.785 939.720 2238.600

Table 9 Pdf file send through wireless i/f comparison table

42

5.2 3Measurements Results Part II

This part of measurements is used as reference for the measurements in the previous

section. These measurements are used in order to extract conclusions for the scenarios which

have been used in this thesis.

5.2.1 Bluetooth associated to network for 300sec

Consumption Results (mW)

Average: 169.486 Min: 142.680 Max: 1116.840

Figure 39 Bluetooth associated to network for 300sec

3 All wireless components are deactivated, except the measured one and display component is deactivated. For
details see in section “What has been measured and why”

43

5.2.2 Bluetooth associated to network for 5sec

Consumption Results (mW)

Average: 196.136 Min: 142.680 Max: 1092.240

Figure 40 Bluetooth associated to network for 5sec

5.2.3 Bluetooth associated to network for 60sec

Consumption Results (mW)

Average: 178.650 Min: 142.680 Max: 1008.600

Figure 41 Bluetooth associated to network for 60sec

44

5.2.4 Bluetooth not associated to network for 5sec

Consumption Results (mW)

Average: 309.099 Min: 241.080 Max: 1220.160

Figure 42 Bluetooth not associated to network for 5sec

5.2.5 Bluetooth not associated to network for 60sec

Consumption Results (mW)

Average: 281.412 Min: 241.080 Max: 1161.120

Figure 43 Bluetooth not associated to network for 60sec

45

5.2.6 Bluetooth not associated to network for 300sec

Consumption Results (mW)

Average: 254.041 Min: 236.160 Max: 1200.480

Figure 44 Bluetooth not associated to network for 300sec

5.2.7 Boot loading

Consumption Results (mW)

Average: 701.188 Min: 0.000 Max: 2110.680

Figure 45 Boot loading

46

5.2.8 Display off with suspend mode on for 180sec

Consumption Results (mW)

Average: 8.216 Min: 0.000 Max: 24.600

Figure 46 Display off with suspend mode on for 180sec

5.2.9 Display off for 180sec

Consumption Results (mW)

Average: 181.278 Min: 157.440 Max: 423.120

Figure 47 Display off for 180sec

47

5.2.10 Display on with Suspend mode on (Brightness 100%) for 180sec

Consumption Results (mW)

Average: 987.866 Min: 939.720 Max: 1220.160

Figure 48 Display on with Suspend mode on (Brightness 100%) for 180sec

5.2.11 Display on with Suspend mode on (Brightness 25%) for 180sec

Consumption Results (mW)

Average: 853.549 Min: 747.840 Max: 1471.080

Figure 49 Display on with Suspend mode on (Brightness 25%) for 180sec

48

5.2.12 Display on with Suspend mode on (Brightness 4%) for 180sec

Consumption Results (mW)

Average: 684.064 Min: 580.560 Max: 1367.760

Figure 50 Display on with Suspend mode on (Brightness 4%) for 180sec

5.2.13 Display on with Suspend mode on (Brightness 50%) for 180sec

Consumption Results (mW)

Average: 699.699 Min: 649.440 Max: 1092.240

Figure 51 Display on with Suspend mode on (Brightness 50%) for 180sec

49

5.2.14 Display on with Suspend mode on (Brightness 75%) for 180sec

Consumption Results (mW)

Average: 852.057 Min: 797.040 Max: 1480.920

Figure 52 Display on with Suspend mode on (Brightness 75%) for 180sec

5.2.15 Display on (Brightness 100%) for 180sec

Consumption Results (mW)

Average: 987.503 Min: 939.720 Max: 1382.520

Figure 53 Display on (Brightness 100%) for 180sec

50

5.2.16 Display on (Brightness 25%) for 180sec

Consumption Results (mW)

Average: 575.106 Min: 526.440 Max: 905.280

Figure 54 Display on (Brightness 25%) for 180sec

5.2.17 Display on (Brightness 4%) for 180sec

Consumption Results (mW)

Average: 469.902 Min: 418.200 Max: 1293.960

Figure 55 Display on (Brightness 4%) for 180sec

51

5.2.18 Display on (Brightness 75%) for 180sec

Consumption Results (mW)

Average: 842.857 Min: 792.120 Max: 1141.440

Figure 56 Display on (Brightness 75%) for 180sec

5.2.19 Display on (Brightness 50%) for 180sec

Consumption Results (mW)

Average: 708.536 Min: 659.280 Max: 1052.880

Figure 57 Display on (Brightness 50%) for 180sec

52

5.2.20 WiFi associated to network for 300sec

Consumption Results (mW)

Average: 202.846 Min: 142.680 Max: 1215.240

Figure 58 WiFi associated to network for 300sec

5.2.21 WiFi associated to network for 5sec

Consumption Results (mW)

Average: 266.360 Min: 142.680 Max: 1180.800

Figure 59 WiFi associated to network for 5sec

53

5.2.22 WiFi associated to network for 60sec

Consumption Results (mW)

Average: 284.121 Min: 142.680 Max: 1333.320

Figure 60 WiFi associated to network for 60sec

5.2.23 WiFi not associated to network for 300sec

Consumption Results (mW)

Average: 179.491 Min: 142.680 Max: 1013.520

Figure 61 WiFi not associated to network for 300sec

54

5.2.24 WiFi not associated to network for 5sec

Consumption Results (mW)

Average: 218.913 Min: 142.680 Max: 1107

Figure 62 WiFi not associated to network for 5sec

5.2.25 WiFi not associated to network for 60sec

Consumption Results (mW)

Average: 187.726 Min: 142.680 Max: 1047.960

Figure 63 WiFi not associated to network for 60sec

55

5.2.26 Summarized measurements results Part II

I/F Measurement Avg(mW) Min(mW) Max(mW)

BT Associated to network for 300s 169.486 142.680 1116.840

BT Not associated to network for 300s 254.041 236.160 1200.480

BT Associated to network for 5s 196.136 142.680 1092.240

BT Not associated to network for 5s 309.099 241.080 1220.160

BT Associated to network for 60s 178.650 142.680 1008.600

BT Not associated to network for 60s 281.412 241.080 1161.120

Table 10 Bluetooth i/f comparison table

Component Measurement Avg(mW) Min(mW) Max(mW)

Display Brightness asc 120sec 974.771 624.840 1854.840

Display Display off Suspend on 180sec 8.216 0.000 24.600

Display Display off 180sec 181.278 157.440 423.120

Display Display on Suspend on Brightness 100 180sec 987.866 939.720 1220.160

Display Display on Suspend on Brightness 25% 180sec 853.549 747.840 1471.080

Display Display on Suspend on Brightness 4% 180sec 684.064 580.560 1367.760

Display Display on Suspend on Brightness 50% 180sec 699.699 649.440 1092.240

Display Display on Suspend on Brightness 75% 180sec 852.057 797.040 1480.920

Display Display on Brightness 100% 180ssec 987.503 939.720 1382.520

Display Display on Brightness 25% 180sec 575.106 526.440 905.280

Display Display on Brightness 4% 180sec 469.902 418.200 1293.960

Display Display on Brightness 75% 180sec 842.857 792.120 1141.440

Display Display on bright 50% 180sec 708.536 659.280 1052.880

Table 11 Display component comparison table

Measurement Avg(mW) Min(mW) Max(mW)

Boot loading 701.188 0.000 2110.680

Table 12 General scenarios

56

I/F Measurement Avg(mW) Min(mW) Max(mW)

WiFi WiFi associated to network 300s 202.846 142.680 1215.240

WiFi WiFi not associated to network 300s 179.491 142.680 1013.520

WiFi WiFi associated to network 5s 266.360 142.680 1180.800

WiFi WiFi not associated to network 5s 218.913 142.680 1107.000

WiFi WiFi associated to network 60s 284.121 142.680 1333.320

WiFi WiFi not associated to network 60s 187.726 142.680 1047.960

Table 13 WiFi comparison table

6. Conclusions

One of the conclusions of this thesis is that it is very difficult to get “clear” offline

measurements, because hardware components cannot operate fully isolated. As a result, every

measurement is the aggregate of power consumption of a number of device components. The

infrastructure must be flexible and independent of the under test device (if it is possible), so

problems related to software compatibility can be avoided.

It is important to create an interface which provides communication between the under

test device and measurement infrastructure. This communication will be used to start/stop test

case scenarios, to automate 100% the testing processes and to mark in the logging data which

part of the scenario is running.

The measurements show that in some cases (such as large files), it is better to use

interfaces which have more consumption than others (like WiFi vs Bluetooth), because of their

bandwidth. Also, it is not the best practice to compress files which are already compressed (like

*.jpg, *.mp4, *.mov) and send them through WiFi or Bluetooth.

During the measurements, the under test device has to be disconnected from USB cable.

In case this connection exists, ~30mA “noise” is added to the measurements. Also, the user must

avoid screen sliding, during the run of another scenario, because it adds ~80-100mA “noise”.

The only exception is, when the scenario is to measure the sliding.

57

7. Future Research-Work

This thesis is based on offline measurement technique. A stable and independent of the

under test device system needs to be developed. This can be achieved by implementing a

middleware API on Android, which will communicate with a RS232 Converter FTDI USB.

Then, a software suite, which will help to create automated measurements, will be developed.

This software suite must contain the software of the under test device and of the measurement

system on the computer.

8. Bibliography - References

1. Power profiles, Android open source project (link)

2. Measuring power values, Android open source project (link)

3. Controlling system suspend, Android open source project (link)

4. Yoctopuce (link)

5. Yocto-amp manual (link)

6. XDA Developers forum (link)

7. Battery capacity – Wikipedia (link)

8. Battery Ratings (Chapter11), Lessons in Electric Circuits – allaboutcircuits.com (link)

9. Android OS History – Wikipedia (link)

10. Kingo Root (link)

58

9. Measurements source code

8.1 Matlab script for extracting results

%clear cli workspace

clc

%clear all variables, vector etc

clear all

%get list of all .csv files

fnames = dir('csv/*.csv');

%get the file list length

numfids = length(fnames);

vars = cell(1,numfids);

%opens the file where will save avg, min and max values

fileID = fopen('measurement_avg.txt','w');

for K = 1:numfids

 clear Array

 Array = importdata(strcat('csv/',fnames(K).name),'\t',1);

 %from all measurements in log file subsctract the first one

 %which allow to start the chart from zero point

 colt = Array.data(:, 1)-Array.data(1:1, 1);

 colp = Array.data(:, 4);

 %calculate execution time in ms

 Exectime = (Array.data(end:end, 1) - Array.data(1:1, 1);

 %convert execution time from ms to min

 exectime = (exectime/1000)/60;%convert

59

 [name,ext] = strtok(fnames(K).name, '.');

 %creates figure

 figure(K);

 plot(colt,colp);

 xlabel('time(mSec)')

 ylabel('power(mW)')

 title(strcat('Measurement-',strrep(name,'_',' ')))

 %saves the chart as png file

 saveas(K,strcat('figures/',name),'png')

 % Appends the file with avg, min, max values & execution

time

 fprintf(fileID,'%s (average %6.3fmW, min %6.3fmW, max

%6.3fmW, execution time %6.2fmin)\r\n',strcat('Measurement-',

strrep(name,'_',' ')),mean(colp),min(colp),max(colp),exectime);

end

%Close the file

fclose(fileID);

8.2 Script: take_picture.py

File: take_picture.py

#!/usr/bin/env python

import android

droid = android.Android()

droid.cameraCapturePicture('/sdcard/foo.jpg')

60

8.3 Script: bluetooth_not_5_s.py

File: bluetooth_not_5_s.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

droid.toggleBluetoothState(True,False)

time.sleep(5)

droid.toggleBluetoothState(False,False)

8.4 Script: bluetooth_not_5_m.py

File: bluetooth_not_5_m.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

droid.toggleBluetoothState(True,False)

time.sleep(300)

droid.toggleBluetoothState(False,False)

8.5 Script: bluetooth_not_60_s.py

File: bluetooth_not_60_s.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

61

droid.toggleBluetoothState(True,False)

time.sleep(300)

droid.toggleBluetoothState(False,False)

8.6 Script: email.py

File: email.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

droid.sendEmail("c****@gmail.com","Python Speeks", "i try")

8.7 Script: brightness_2.py

File: brightness_2.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

droid.setScreenBrightness(0)

time.sleep(30)

droid.setScreenBrightness(10)

time.sleep(15)

droid.setScreenBrightness(50)

time.sleep(15)

droid.setScreenBrightness(100)

time.sleep(15)

droid.setScreenBrightness(150)

time.sleep(15)

droid.setScreenBrightness(200)

time.sleep(15)

droid.setScreenBrightness(255)

62

8.8 Script: brightness_1.py

File: brightness_1.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

droid.setScreenBrightness(0)

time.sleep(300)

droid.setScreenBrightness(150)

8.9 Script: brightness_3.py

File: brightness_3.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

droid.setScreenBrightness(255)

time.sleep(300)

droid.setScreenBrightness(150)

8.10 Script: wifi_not_assoc_5_sec.py

File: wifi_not_assoc_5_sec.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

63

counter = 1

while counter!=5:

 droid.wifiDisconnect()

 time.sleep(1)

 counter += 1

print 'Script has been looping for', counter, 'seconds...'

droid.wifiReassociate()

time.sleep(1)

8.11 Script: wifi_not_assoc_5_min.py

File: wifi_not_assoc_5_min.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

counter = 1

while counter!=300:

 droid.wifiDisconnect()

 time.sleep(1)

 counter += 1

print 'Script has been looping for', counter, 'seconds...'

droid.wifiReassociate()

time.sleep(1)

8.12 Script: wifi_not_assoc_60_sec.py

File: wifi_not_assoc_60_sec.py

#!/usr/bin/env python

64

import android

import time

droid = android.Android()

time.sleep(15)

counter = 1

droid.ttsSpeak('Measurement Started')

while counter!=60:

 droid.wifiDisconnect()

 time.sleep(1)

 counter += 1

print 'Script has been looping for', counter, 'seconds...'

droid.wifiReassociate()

time.sleep(1)

8.13 Script: wifi_5_m.py

File: wifi_5_m.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

droid.toggleWifiState(True)

time.sleep(300)

droid.toggleWifiState(False)

8.14 Script: wifi_5.py

File: wifi_5.py

#!/usr/bin/env python

65

import android

import time

droid = android.Android()

time.sleep(15)

droid.toggleWifiState(True)

time.sleep(5)

droid.toggleWifiState(False)

8.15 Script: wifi_60.py

File: wifi_60.py

#!/usr/bin/env python

import android

import time

droid = android.Android()

time.sleep(15)

droid.toggleWifiState(True)

time.sleep(60)

droid.toggleWifiState(False)

10. Table of Figures

Figure 2 Connecting Ammeter to the phone ... 7

Figure 1 Yocto-Amp USB Electrical Sensor .. 7

Figure 3 Android architecture ... 9

Figure 4 How to create a "fake" battery for a mobile device .. 15

Figure 5 Infrastructure setup ... 16

Figure 6 Yoctopuce Virtual Hub software .. 17

Figure 7 Chrome warning ... 18

Figure 8 KingoRoot download site ... 18

Figure 9 KingoRoot process ... 19

Figure 10 KingoRoot Succeeded Root ... 19

66

Figure 11 ADB Shell .. 20

Figure 12 Android BusyBox ... 21

Figure 13 Doc file transfer through Bluetooth .. 27

Figure 14 Compression of a doc file and transfer through Bluetooth... 27

Figure 15 JPG file transfer through Bluetooth .. 28

Figure 16 Compression of a JPG file and transfer through Bluetooth .. 28

Figure 17 MOV file transfer through Bluetooth ... 29

Figure 18 Compression of a MOV file and transfer through Bluetooth 29

Figure 19 MP4 file transfer through Bluetooth... 30

Figure 20 Compression of a MP4 file and transfer through Bluetooth... 30

Figure 21 OGG file transfer through Bluetooth .. 31

Figure 22 Compression of an OGG file and transfer through Bluetooth 31

Figure 23 PDF file transfer through Bluetooth ... 32

Figure 24 Compression of a PDF file and transfer through Bluetooth ... 32

Figure 25 WiFi on idle state & network associated (display on with brightness 60%) for 2min . 33

Figure 26 WiFi on idle state & network associated (display on with brightness 60%) for 20min 33

Figure 27 Doc file transfer through WiFi ... 34

Figure 28 Compression of a DOC file and transfer through WiFi ... 34

Figure 29 JPG file transfer through WiFi ... 35

Figure 30 Compression of a JPG file and transfer through WiFi ... 35

Figure 31 MOV file transfer through WiFi... 36

Figure 32 Compression of a MOV file and transfer through WiFi... 36

Figure 33 MP4 file through WiFi .. 37

Figure 34 Compression of a MP4 file and transfer through WiFi .. 37

Figure 35 OGG file transfer through WiFi ... 38

Figure 36 Compression of a OGG file and transfer through WiFi ... 38

Figure 37 PDF file transfer through WiFi... 39

Figure 38 Compression of a PDF file and transfer through WiFi... 39

Figure 39 Bluetooth associated to network for 300sec ... 42

Figure 40 Bluetooth associated to network for 5sec ... 43

Figure 41 Bluetooth associated to network for 60sec ... 43

67

Figure 42 Bluetooth not associated to network for 5sec ... 44

Figure 43 Bluetooth not associated to network for 60sec ... 44

Figure 44 Bluetooth not associated to network for 300sec ... 45

Figure 45 Boot loading ... 45

Figure 46 Display off with suspend mode on for 180sec ... 46

Figure 47 Display off for 180sec .. 46

Figure 48 Display on with Suspend mode on (Brightness 100%) for 180sec 47

Figure 49 Display on with Suspend mode on (Brightness 25%) for 180sec 47

Figure 50 Display on with Suspend mode on (Brightness 4%) for 180sec 48

Figure 51 Display on with Suspend mode on (Brightness 50%) for 180sec 48

Figure 52 Display on with Suspend mode on (Brightness 75%) for 180sec 49

Figure 53 Display on (Brightness 100%) for 180sec .. 49

Figure 54 Display on (Brightness 25%) for 180sec .. 50

Figure 55 Display on (Brightness 4%) for 180sec .. 50

Figure 56 Display on (Brightness 75%) for 180sec .. 51

Figure 57 Display on (Brightness 50%) for 180sec .. 51

Figure 58 WiFi associated to network for 300sec .. 52

Figure 59 WiFi associated to network for 5sec .. 52

Figure 60 WiFi associated to network for 60sec .. 53

Figure 61 WiFi not associated to network for 300sec .. 53

Figure 62 WiFi not associated to network for 5sec .. 54

Figure 63 WiFi not associated to network for 60sec .. 54

11. Table of Tables

Table 1 Test cases without data transfer ... 12

Table 2 Test cases with data transfer .. 12

Table 3 Measurement CSV sample ... 17

Table 4 Doc file send through wireless i/f comparison table .. 40

Table 5 JPG file send through wireless i/f comparison table .. 40

68

Table 6 Mov file send through wireless i/f comparison table ... 41

Table 7 Mp4 file send through wireless i/f comparison table ... 41

Table 8 Ogg file send through wireless i/f comparison table ... 41

Table 9 Pdf file send through wireless i/f comparison table ... 41

Table 10 Bluetooth i/f comparison table ... 55

Table 11 Display component comparison table .. 55

Table 14 General scenarios ... 55

Table 12 WiFi comparison table ... 56

