ПANEПILTHMIO
ПАТР $\Omega \mathrm{N}$
UNIVERSITY OF PATRAS

ГХОАН ГЕЛПONIKএN EПİTHM日N
 TMHMA ГЕЯПONIA乏

Птьұıккŋ́ Ерүабía

ПІТТА ГTEPГIANH

A. M 12505

ЕІІНГНTPIA KАӨНГНТРIA

Kapavaбто́бך Eıøŋ́vๆ

Evдарıбтí\&ร

 $\pi \rho о \pi \tau v \chi ı к о и ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \tau о v ~ \tau \mu \eta ́ \mu \alpha \tau о \varsigma ~ « Г \varepsilon \omega \pi о v i ́ \alpha \varsigma » ~ \tau \eta \varsigma ~ \Sigma \chi о \lambda \eta ́ \varsigma ~ Г \varepsilon \omega \pi о v ı к ळ ́ v ~$

 $\pi \alpha \rho о v \sigma i ́ \alpha \sigma \eta ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \alpha s ~ \mu о v ~ \alpha \pi o ́ ~ \sigma \cup \gamma \gamma \rho \alpha \varphi ı к ŋ ́ s ~ к \alpha ı ~ \sigma \tau \alpha \tau ı \sigma \tau ו к \eta ́ s ~ \pi \lambda \varepsilon v \rho \alpha ́ \varsigma . ~ \Sigma \tau \eta ~$ $\sigma v \vee \varepsilon ́ \chi \varepsilon เ \alpha, ~ \theta \alpha ~ \eta ́ \theta \varepsilon \lambda \alpha ~ v \alpha ~ \varepsilon v \chi \alpha \rho ı \sigma \tau \eta ́ \sigma \omega ~ \tau о ~ \sigma ט ́ v o \lambda o ~ \tau \omega v ~ \alpha \gamma \rho о \tau ஸ ́ v ~ \pi о v ~ \delta \varepsilon ́ \chi \tau \eta к \alpha v ~ v \alpha ~$

Пєрıєұо́ $\mu \varepsilon v \alpha$

Еидарьттí\＆я 2
 3
Еирєтйрıо вкко́vตv 4
Пєрíдŋчๆ 6
Abstract 8
Еıбоүตүๆ́ 9
 11
 14
乏ń $\mu \alpha v o n ~ \pi \rho o i o ́ v t \omega v ~$ 19
H O入ок入n $\rho \omega \mu \varepsilon ́ v \eta ~ \delta ı \alpha \chi \varepsilon i p ı \sigma \eta ~ \pi \alpha \rho \alpha \sigma i ́ \tau \omega v ~$ 23
Me日odoдоүía 36
 36
$\Sigma \chi \varepsilon \delta ı \sigma \sigma \mu$ о́ દ́pєvvas 36
 37
Ерү $\boldsymbol{\lambda} \boldsymbol{\varepsilon}$ ín 0 37
Мと́Өoסot $\Sigma \tau \alpha \tau \iota \sigma \tau \iota к ฑ ́ \varsigma ~ \alpha v \alpha ́ \lambda v \sigma \eta \varsigma ~$ 37
 38
 39
$\Delta \eta \mu о \gamma \rho \alpha, \varphi ⿺ к \alpha ́ \chi \alpha \rho \alpha к \tau \eta \rho ı \tau \tau \iota к \alpha ́$ 40
 42
 53
 62
 64
 69
Вı $\boldsymbol{\lambda} \lambda \mathbf{\jmath} \boldsymbol{\gamma} \rho \boldsymbol{\alpha}$ рі́ 72
 75

Evpetท́pıo عıкóvตv

 17
 22
 23
Eıкóva 4．H о入ок入пр $\omega \mu \varepsilon ́ v \eta ~ \delta ı \alpha \chi \varepsilon i \rho ı \sigma \eta ~ \pi \alpha \rho \alpha \sigma i ́ t \omega v ~(D a r a, ~ 2019) ~$ 25
Evp\＆тípıo Пıvóкшv
 14
 20
 45
 55
Еирєти́рı Грацпио́тшv
Гра́фпиа 1：Н入ıкіа 40
Гра́фпиа 2：Морф $\omega \tau$ ткó $\varepsilon \pi i \pi \varepsilon \delta o$ 41
Гра́фпиа 3：Ката́ ки́рıо عта́үүع $\lambda \mu \alpha$ аүро́тпऽ 41
 41
 42
Гра́ф $\eta \mu \alpha$ 6：Катд́ртıбף үıа үعшрүıка́ фа́р $\mu \alpha к \alpha$ 42
 42
 49
 50
 50
 50
 51
 єтเкદ́та 51
 oтqv E入入ŋvเкท́ aүopá 51
 52
 52
 52
 53
 53
 59
 59
 60
 60
 үعшрүкко́ фа́риако. 60
 61
 61
Гра́фпиа 27: Еvŋцє́р $\omega \sigma \eta$ каı хрท́бๆ МАП. 61
 62
 62
 63
 64
 65
 aүpótŋs" 66
 66
Гра́фๆ $\mu \alpha$ 35: $\Sigma \tau \alpha \tau \iota \sigma \tau เ \kappa \varepsilon ́ \varsigma ~ \delta ı \alpha ф о \rho \varepsilon ́ \varsigma ~ s c o r e ~ \omega \varsigma ~ \pi \rho о \varsigma ~ t o v ~ N o \mu o ́ ~$ 67
68

Пєрíдŋчך

Н $\alpha \gamma \rho о \tau \iota к \eta ́ ~ \alpha v \alpha ́ \pi \tau v \xi ŋ \eta ~ \sigma v v \varepsilon \chi i ́ \zeta \varepsilon ı ~ v \alpha ~ \pi \alpha i ́ \zeta \varepsilon ı ~ к \alpha \theta о \rho ı \sigma \tau ı к o ́ ~ \rho o ́ \lambda о ~ \sigma \tau о v ~ \pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau ı \sigma \mu o ́ ~$

 $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \alpha \nu$ ol $\pi \alpha \rho \alpha \gamma \omega \gamma$ oí $\tau \eta \varsigma ~ \Delta v \tau ı \kappa \eta ́ \varsigma ~ E \lambda \lambda \alpha ́ \delta \alpha \varsigma, ~ \varepsilon v ต ́ ~ \tau о ~ \delta \varepsilon ' ́ \gamma \mu \alpha ~ \eta ́ \tau \alpha \nu ~ 150 ~ \alpha ́ \tau о \mu \alpha . ~ H ~$

 $\varepsilon \pi \alpha ́ \gamma \gamma \varepsilon \lambda \mu \alpha$ аү $о ́ \tau \varepsilon \varsigma ~ \mu \varepsilon ~ \varepsilon ́ \delta \rho \alpha ~ \tau \eta ~ \Delta v \tau \iota \kappa \eta ́ ~ Е \lambda \lambda \alpha ́ \delta \alpha, ~ к v \rho i ́ \omega s ~ \tau \eta v ~ А \chi \alpha i ̈ \alpha, ~ \mu \varepsilon ~ к и ́ \rho ı \alpha ~$

 тоvs $\alpha \pi \alpha ́ v \tau \eta \sigma \alpha v ~ \sigma \omega \sigma \tau \alpha ́ ~ o ́ \tau ı ~ \sigma \varepsilon ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \pi о v ~ \chi \cup \theta \varepsilon i ́ ~ \gamma \varepsilon \omega \rho \gamma ı к о ́ ~ \varphi \alpha ́ \rho \mu \alpha к о ~ \sigma \tau о ~ \delta \varepsilon ́ \rho \mu \alpha, ~$

Abstract

Rural development continues to play a key role in the production and policy planning of many countries. Agricultural chemicals are globally used widely in order to increase efficiency, quality, productivity and variety of products throughout the year. However, their misuse poses risks to the health of the producers, consumers and the environment. That is why EU has established guidelines for their use, which should be respected by everyone. The purpose of this study was to investigate and evaluate the knowledge and practices in the use of plant protection products by producers in Western Greece. A synchronous study was conducted from April to July 2021. The tool used was a Likert scale self-report questionnaire, in printed and online form, of 30 closed-ended questions, divided into 3 sections (demographics, knowledge of the legislation governing pesticides and good practice in the use of pesticides). The population of the research was the producers of Western Greece, while the sample was 150 people. Statistical analysis was performed with IBM SPSS 24 and Microsoft Office Excel 2016. The results, in terms of demographics, showed that the participants were mainly producers aged 31-40, high school graduates, who are mainly farmers based in Western Greece, mainly in Achaia, with the main crop being viticulture, that have not been certified in an integrated crop management program. As for the knowledge of the legislation governing pesticides, only $1 / 3$ of the respondents answered correctly that they make the decision to use a pesticide with the help of a geotechnical consultant. Still, the majority did not recognize the characteristics of a legal or illegal pesticide, nor the responsibilities that one bears when using them. On the other hand, in terms of adhering to good practices when applying plant protection products, the majority of respondents answered correctly that in case of pesticide spilled on skin, they have to wash the skin with plenty of water and follow the instructions on its label. Additionally, they were largely informed about the ways of storing pesticides correctly. In conclusion, it appears that in general the answers were unsatisfactory in both their knowledge and practices in the use of pesticides, however the highest percentage of producers considered it necessary to train in safety and plant protection. Future research is proposed on a larger and more representative sample, the size of which will result from the size of the population.

Keywords

Pesticides, knowledge, practices, farmers, Western Greece

Eıбоүळүи́

 $\beta \iota \omega ் \sigma \mu \eta$. Н $\pi \alpha \rho о v ́ \sigma \alpha$ عрүабía $\alpha v \alpha \lambda v ́ \varepsilon ı ~ o \rho ı \sigma \mu \varepsilon ́ v \varepsilon \varsigma ~ \pi \tau v \chi \varepsilon ́ \varsigma ~ \tau \omega v ~ \pi \lambda \varepsilon о v \varepsilon \kappa \tau \eta \mu \alpha ́ \tau \omega v ~ к \alpha ı ~ \tau \omega v ~$

 $\varepsilon \pi \imath \theta \nu \mu \eta \tau \alpha$.

 $\pi \rho \alpha \gamma \mu \alpha \tau \iota к о$ х́ $\chi \rho \eta ́ \sigma \tau \varepsilon \varsigma ~ \tau о v \varsigma . ~ ' E \chi \varepsilon ı ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \sigma \eta \mu \alpha \sigma i ́ \alpha ~ v \alpha ~ \alpha \xi \xi ı \lambda о \gamma \eta \theta \varepsilon i ́ ~ \eta ~ \gamma \nu ต ́ \sigma \eta ~ \tau \omega v$

олоíol $\pi \alpha \rho \alpha ́ \gamma o v v ~ \tau \alpha ~ \pi \rho о і ̈ o ́ v \tau \alpha ~ \tau \alpha ~ о \pi о i ́ \alpha ~ \varepsilon ́ \rho \chi о v \tau \alpha ı ~ \sigma \tau о ~ \tau \rho \alpha \pi \varepsilon ́ \zeta ̌ ~ \tau о v ~ к \alpha \tau \alpha v \alpha \lambda \omega \tau \eta ́ ~$

 бuveıסףtŋ́s $\gamma v ต ́ \sigma \eta s$.

 $\beta \alpha \sigma \iota \varkappa$ бuvӨŋ́кŋ $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma$.

$\pi \rho o i ̈ o ́ v t a$

- $\tau \eta v \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha ~ \varphi v \tau \iota к ळ ́ v ~ \pi \rho о і ̈ o ́ v \tau \omega v ~ \alpha \pi o ́ ~ \varepsilon \pi ı \beta \lambda \alpha \beta \varepsilon i ́ s ~ о \rho \gamma \alpha v ı \sigma \mu o v ́ s, ~ \alpha v \tau i ́ \sigma \tau о \chi \alpha$

 Өрєлтıк⿱́ $\sigma \cup \sigma \tau \alpha \tau ו \kappa \alpha ́$,

 $\alpha v \varepsilon \pi \imath \theta \dot{\mu} \mu \tau \eta \varsigma \alpha v \alpha ́ \pi \tau v \xi ̌ \eta \varsigma ~ \varphi v \tau \omega ́ v$.

T α 甲vтолробтаєєvтıка́ $\pi \rho о$ öóvт (Plant protection products - PPP) عívaı $\sigma \tau \eta v$

 $\theta \varepsilon \mu \varepsilon \lambda ı \omega ́ \delta \varepsilon ı \varsigma \delta ı \rho \gamma \gamma \sigma \dot{i} \varepsilon \varsigma ~ \sigma \varepsilon \alpha \dot{\alpha} \lambda \lambda$ оvऽ $\zeta \omega v \tau \alpha v \circ v ́ \varsigma ~ о \rho \gamma \alpha v ı \sigma \mu о v ́ \varsigma$.

 غ́ $\chi \varepsilon ı ~ \sigma \chi \varepsilon \delta 1 \alpha \sigma \tau \varepsilon i ́ ~ \gamma ı \alpha ~ v \alpha ~ \varepsilon \xi \alpha \sigma \sigma \varphi \alpha \lambda i \zeta \varepsilon ı ~ v \psi \eta \lambda o ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta о ~ \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha s ~ \gamma ı \alpha ~ \tau \eta \nu ~ \alpha v \theta \rho o ́ \pi ı \nu \eta$

1. $\delta \varepsilon v$ غ́ $\chi \varepsilon ı ~ \varepsilon \pi ı \beta \lambda \alpha \beta \varepsilon i ́ \varsigma ~ \varepsilon \pi ı \tau \tau \omega ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau о \cup \varsigma ~ \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \varepsilon ́ \varsigma, ~ \tau о \cup \varsigma ~ \alpha \gamma \rho о ́ \tau \varepsilon \varsigma ~ \kappa \alpha ı ~ \tau о v \varsigma ~$

2. $\delta \varepsilon v \pi \rho о \kappa \alpha \lambda \varepsilon i ́ \alpha \pi \alpha \rho \alpha ́ \delta \varepsilon \kappa \tau \varepsilon \varsigma ~ \varepsilon \pi ı \pi \tau \omega ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau о ~ \pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda о \nu$

 ообíєऽ $\pi . \chi$. $\mu \kappa \rho о о р \gamma \alpha v ı \mu$ ои́s.

 орү $\alpha v ı \mu$ оv́s π оv $\delta \varepsilon v$ бтоұєv́ovv, $\tau \eta v \alpha v \theta \rho \omega ́ \pi ı v \eta ~ v \gamma \varepsilon i ́ \alpha ~ к \alpha ı ~ \tau о ~ \pi \varepsilon \rho ı ß \alpha ́ \lambda \lambda о v . ~$

 $\varepsilon \xi \alpha i ́ \rho \varepsilon \sigma \eta$. T $\alpha \pi \alpha \rho \alpha ́ \sigma ı \tau \alpha ~(\pi о v ~ \pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v o v v ~ \varepsilon ́ v \tau о \mu \alpha ~ \kappa \alpha ı ~ \sigma ט v \alpha \varphi \eta ́ ~ \zeta ต ́ \alpha, ~ \pi \alpha \rho \alpha ́ \gamma о v \tau \varepsilon \varsigma ~$

 $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i ́ \alpha ~ \chi \rho o ́ v i \alpha, \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho о ~ \alpha \pi o ́ ~ \pi о \tau \varepsilon ́, ~ \pi \alpha \rho \alpha \tau \eta \rho \varepsilon i ́ \tau \alpha ı ~ \mu 1 \alpha ~ \sigma \eta \mu \alpha \nu \tau ı к \eta ́ ~ \alpha v \alpha ́ \pi \tau v \xi ॄ \eta$

[^0]

 тט́то $\tau \omega v \pi \alpha \rho \alpha \sigma i ́ \tau \omega v \pi \circ v \varepsilon \lambda \varepsilon ́ \gamma \chi \circ \cup v$（Пívакаऽ 1）．

KATHГOPIA
AАГIOKTONA

ANTIMIKPOBIAKA
EAKYETIKA

BIOПAPALITOKTONA

BIOKTONA АПОФУААЛТIKА

АПОЕНРANTIKA

АПОАYMANTIKA

MYKHTOKTONA
YПOKAПNIETIKA

ZIZANIOKTONA

PY＠MIETIKOI ПAPAГONTE ANAПTYEHE

ENTOMOKTONA

ПЕРІГРАФН

इкотต́vovv 甲v́кıа бє $\lambda i ́ \mu v \varepsilon \varsigma, ~ к \alpha v \alpha ́ \lambda ı \alpha, ~$ $\pi \iota \sigma i v \varepsilon \varsigma, \delta \varepsilon \xi \alpha \mu \varepsilon v \varepsilon ́ \varsigma ~ v \varepsilon \rho о v ́ ~ к \alpha l ~ \alpha ́ \lambda \lambda \varepsilon \varsigma \varsigma$ толоөєбíधऽ．
इкотө́vovv μ кроорүаviбнои́s ó $\pi \omega \varsigma$ $\beta \alpha \kappa \tau \eta ́ \rho ı \alpha$ каı ıós．
Парабט́povv opүаvıбноv́s $\sigma \varepsilon \quad \mu \alpha$ $\pi \alpha \gamma i \delta \alpha$ ŋ́ $\delta o ́ \lambda \omega \mu \alpha$ ，$\gamma 1 \alpha$ $\pi \alpha \rho \alpha ́ \delta \varepsilon \gamma \gamma \mu \alpha$ ，
 $\mu 1 \alpha \pi \alpha \gamma^{\delta} \delta \alpha$ ．
Проє́рхоขтаı ало́ 甲ибוка́ v $\lambda \iota<\alpha ́$ о́ $\pi \omega \varsigma$
 $\mu \varepsilon ́ \tau \alpha \lambda \lambda \alpha$ ．

Прока入ои́v $\pi \tau \dot{\sigma} \sigma \eta$ $\sigma \tau \alpha$ 甲v́入入а $\mathfrak{\eta} \tau о$甲v́ $\lambda \lambda \omega \mu \alpha \alpha \pi$ ó $\varepsilon v \alpha$ 甲vтó，$\sigma v v \eta ́ \theta \omega s ~ \gamma 1 \alpha v \alpha$

甲ขтóv．
इкото́vovv ŋ́ $\quad \alpha \delta \rho \alpha v$ тоюои́v $\mu 1 к \rho о о \rho \gamma \alpha v i \sigma \mu о$ и́s $\pi о v \quad \pi \alpha \rho \alpha ́ \gamma о v \nu$ $\alpha \sigma \theta \varepsilon ́ v \varepsilon เ \varepsilon \varsigma ~ \sigma \varepsilon \alpha \dot{\alpha} \beta 1 \alpha \alpha \nu \tau \iota \kappa \varepsilon \not ́ \mu \varepsilon v \alpha$ ．
ミкото́vouv μ и́кๆтє૬．
 $\pi \rho о о \rho i \zeta о \nu \tau \alpha 1 \quad v \alpha \quad \kappa \alpha \tau \alpha \sigma \tau \rho \varepsilon ́ \psi о \nu v$ $\pi \alpha \rho \alpha ́ \sigma ı \tau \alpha, \sigma \varepsilon \kappa \tau i ́ \rho ı \alpha$ ท́ $\sigma \tau о$ દ́ $\delta \alpha \varphi о \varsigma$.

 $\varepsilon \pi \imath \theta \nu \mu \eta \tau \alpha ́$.
 $\tau \omega \nu \varepsilon v \tau o ́ \mu \omega \nu$ ŋ́ $\alpha \lambda \lambda \varepsilon \varsigma \delta 1 \alpha \delta ı \kappa \alpha \sigma i ́ \varepsilon \varsigma ~ \tau \eta \varsigma$ $\zeta \omega \eta ́ s \tau \omega v$ عvтó $\mu \omega v$ ．
ミкотต́vouv ह́vто α ．

AKAPEOKTONA	甲ขто́ каı ఢம́a．
MIKPOBIAKA ФYTОФАРМАКА	Eívaı μ ккооорүаvıб μ ó π оv бкотळ́vovv， $\alpha v \alpha \sigma \tau \varepsilon ́ \lambda \lambda o u v \quad \grave{\eta} \quad \alpha v \tau \alpha \gamma \omega v i ́ \zeta o v \tau \alpha ı$ $\pi \alpha \rho \alpha ́ \sigma \iota \tau \alpha, \quad \sigma v \mu \pi \varepsilon \rho \iota \lambda \alpha \mu \beta \alpha v \rho \mu \varepsilon ́ v \omega v$ $\varepsilon v \tau o ́ \mu \omega v \quad$ ŋ́ $\dot{\alpha} \lambda \lambda \omega v \quad \pi \alpha \rho \alpha \sigma i ́ \tau \omega v$ $\mu ı к \rho о о р \gamma \alpha v ı \sigma \mu$ ю́v．
KOXAIOAEIMAKOKTONA	ミкото́vovv $\quad \sigma \lambda \lambda \gamma \kappa \alpha ́ \rho l \alpha \quad \kappa \alpha \iota$ $\gamma \nu \mu \nu о \sigma \alpha ́ \lambda ı \alpha \gamma \kappa \varepsilon \varsigma$.
NHMATOKTONA	
$\Omega O K T O N A$	
ФEPOMONE	Δ iата $\alpha ́ \sigma \sigma o v v ~ \tau \eta ~ \sigma о \mu \pi \varepsilon \rho \iota \varphi о \rho \alpha ́ ~$ ఢєvүаро́ $\mu \alpha \tau о \varsigma \tau \omega v$ عvто́ $\mu \omega v$.
PYOMIETE \quad ANAITTYEHE ФYTתN	М $\varepsilon \tau \alpha \beta \alpha ́ \lambda \lambda o v v$ тov $\alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v o ~ \rho v \theta \mu o ́$ $\alpha v \alpha ́ \pi \tau v \xi ̌ \eta \varsigma, \quad \alpha v$ Өочорías \quad ŋ́ $\pi \varepsilon \rho i \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı \lambda(\pi \alpha ́ \sigma \mu \alpha \tau \alpha)$ ．
ФYTIKA ENEQMATRMENA ПPOETATEYTIKA	Eívar ovđí\＆ऽ π оv $\pi \alpha \rho \alpha ́ \gamma o v v ~ \tau \alpha ~ \varphi v \tau \alpha ́ ~ \alpha \pi o ́ ~$ $\gamma \varepsilon v \varepsilon \tau \iota \kappa o ́ ~ v \lambda ı \kappa o ́ ~ \pi о ง ~ \varepsilon ́ \chi \varepsilon ı ~ \pi \rho о \sigma \tau \varepsilon \theta \varepsilon i ́ ~ \sigma \tau о ~$甲итó．
АПऽ＠НТIKА	
MYOKTONA	

 $\tau \eta v \pi \alpha \tau \alpha ́ \tau \alpha, 30 \%$ бто $\sigma \tau \alpha ́ \rho ı ~ к \alpha ı ~ 26 \% ~ \sigma \tau \eta ~ \sigma o ́ \gamma ı \alpha . ~ П р о к \alpha \lambda о и ́ v \tau \alpha ı ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ \sigma \eta \mu \alpha \nu \tau \imath к \varepsilon ́ \varsigma ~$ $\alpha \pi \omega ́ \lambda \varepsilon ı \varepsilon \varsigma ~ \alpha \pi o ́ ~ \zeta \omega ı \alpha ́ ~ \pi \alpha \rho \alpha ́ \sigma ı \tau \alpha ~ к \alpha ı ~ \alpha \sigma \theta \varepsilon ́ v \varepsilon ı \varepsilon \varsigma ~(E u r o p e a n ~ P a r l i a m e n t a r y ~ R e s e a r c h ~$ Service，2019）．
 $\pi \imath \theta \alpha v \varepsilon ́ \varsigma ~ \alpha \pi \omega ́ \lambda \varepsilon 1 \varepsilon \varsigma ~ \varepsilon ́ v \alpha ı ~ 71 \% ~ \sigma \tau \eta ~ B \Delta ~ E v \rho ต ́ \pi \eta, ~ 63 \% ~ \sigma \tau \eta ~ N ~ D ~ E v \rho ஸ ́ \pi \eta, ~ 52 \% ~ \sigma \tau \eta ~ B A ~ к \alpha ı ~$

 $\mu \pi о \rho \varepsilon i ́ v \alpha \alpha \pi о \delta о \theta \varepsilon i ́ ~ \sigma \tau \eta \nu \varepsilon v \tau \alpha \tau \iota \kappa o ́ \tau \varepsilon \rho \eta ~ \chi \rho \eta ́ \sigma \eta ~ \tau \omega \nu ~ \varphi v \tau о \varphi \alpha \rho \mu \alpha ́ \kappa \omega v$ ．Oı $\chi \alpha \mu \eta \lambda о ́ \tau \varepsilon \rho \varepsilon \varsigma$

 Parliamentary Research Service, 2019). Eठஸ́, $\mu 1 \alpha \pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho о ~ \eta ́ ~ к \alpha \lambda v ́ \tau \varepsilon \rho \alpha ~$

 عठá $\varphi 0 \cup \varsigma)$.

 $\pi \varepsilon \rho ı \chi \varepsilon ́ \varsigma$, о́ оооv $\pi \alpha \rho \alpha ́ \gamma о v \tau \alpha ı ~ \tau \alpha ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \alpha ~ \sigma ı \tau \eta \rho \alpha ́ . ~ Е \pi ı \pi \lambda \varepsilon ́ o v, ~ \varepsilon i ́ v \alpha ı ~ \pi ı \theta \alpha v o ́ v, ~ v \varepsilon ́ \alpha ~$

 λ v́бєıs.

 $\delta ı \alpha \varphi о \rho \varepsilon \tau ı \kappa \alpha ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha ~ \beta \rho о \chi о \pi \tau ஸ ́ \sigma \varepsilon \omega v ~(M e i t e ~ e t ~ a l . ~ 2018), ~ \kappa \alpha \tau \alpha ́ ~ \varphi \theta i ́ v o v \sigma \alpha ~ \sigma \varepsilon \iota \rho \alpha ́: ~$

 $\pi \rho о \sigma \pi \alpha ́ \theta \varepsilon ı \alpha \varsigma ~ \eta ́ ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \alpha \varsigma ~ \sigma v \mu \pi v ́ \kappa v \omega \sigma \eta \varsigma ~ \pi о v ~ о \delta \eta \gamma \varepsilon \varepsilon ́ ~ \sigma \varepsilon ~ \beta \varepsilon ́ \lambda \tau ı \sigma \tau \eta ~ \pi \varepsilon \rho ı \varepsilon к \tau ı к о ́ \tau \eta \tau \alpha ~ \sigma \varepsilon ~$ veคó.

 $\pi \alpha \vartheta о ү o ́ v \alpha$ каı 弓しろávıа（Oerke，2006）

 $\mu \varepsilon \gamma \alpha ́ \lambda о \beta \alpha \theta \mu o ́ \alpha \pi o ́ ~ \tau \eta \nu ~ к \alpha \lambda \lambda ı \varepsilon ́ \rho \gamma \varepsilon ı \alpha, ~ \tau \eta \nu ~ \pi \varepsilon \rho ı о \chi \eta ́ ~ к \alpha ı ~ \tau \eta \nu ~ \pi ı \theta \alpha \nu \eta ́ ~ \alpha \pi o ́ \delta o \sigma \eta . ~ M ı \alpha$

 $\pi \rho о \sigma \alpha \rho \mu о \sigma \mu \varepsilon ́ v \alpha$ бטбтŋ́ $\mu \alpha \tau \alpha \kappa \alpha \lambda \lambda 1 \varepsilon ́ \rho \gamma \varepsilon 1 \alpha \varsigma$.
$\Sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ тovs Lechenet et al．（2014）$\eta \mu \varepsilon \iota \omega \mu \varepsilon ́ v \eta$ хрŋ́бך $\pi \rho о і ̈ o ́ v \tau \omega v$
 $\tau \omega v$ аротраí $\omega \nu$ ка入入ıєрүєוف́v $\sigma \tau \eta$ Г $\alpha \lambda \lambda i ́ \alpha ~ \sigma \tau о ~ 77 \% ~ \tau \omega \nu ~ \alpha \gamma \rho о к \tau \eta \mu \alpha ́ \tau \omega v ~ \pi о v ~$

 $\sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau 0 v \varsigma$ Jacquet et al．（2010），$\eta \mu \varepsilon i ́ \omega \sigma \eta \tau \omega v \pi \rho о$ óv $\tau \omega \nu$ 甲vтолробтабías

 $\varepsilon \pi \imath \tau \varepsilon \cup \chi \theta \varepsilon i ́ ~ \alpha v \tau o ́ s ~ o ~ \sigma \tau o ́ \chi о \varsigma, ~ o l ~ к \alpha \lambda \lambda ı \varepsilon \rho \gamma о v ́ \mu \varepsilon v \varepsilon \varsigma ~ \varepsilon \kappa \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \varepsilon ́ \pi \rho \varepsilon \pi \varepsilon ~ v \alpha ~ \varepsilon \lambda \varepsilon \gamma \chi \theta$ ои́v

 $\theta \varepsilon \omega \rho \varepsilon і ́ \tau \alpha \iota ~ \sigma \eta \mu \alpha \nu \tau \iota к \eta$ ．

 $\alpha \gamma \rho о \tau \omega ́ v$. По $\lambda \lambda \varepsilon ́ \varsigma ~ \mu \varepsilon \lambda \varepsilon ́ \tau \varepsilon \varsigma ~ \delta \varepsilon i ́ \chi v o u v ~ \alpha \sigma u v \varepsilon \pi \eta ́ ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \sigma \chi \varepsilon \tau \iota \kappa \alpha ́ \mu \varepsilon ~ \tau \eta v \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta$

 $\pi \alpha \rho \alpha \gamma \omega \gamma o i ́ ~(v \psi \eta \lambda o ́ \tau \varepsilon \rho \eta ~ \chi \rho \eta ́ \sigma \eta)$ (Lechenet et al., 2014).

 $\pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho \eta \pi \rho о \sigma о \chi \eta ́ . ~ T \alpha ~ \pi \rho \omega ́ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \delta \varepsilon i ́ \chi v o v v ~ o ́ \tau ı ~ \varepsilon i ́ v \alpha ı ~ \pi о \lambda \lambda \alpha ́ ~$

 $\varepsilon \pi \alpha \rho \kappa \eta ́ s ~ \pi \alpha \rho \alpha \kappa о \lambda о и ́ \theta \eta \sigma \eta ~ \kappa \alpha \iota ~ \kappa \alpha \lambda \alpha ́ ~ \mu о \nu \tau \varepsilon ́ \lambda \alpha ~ \pi \rho o ́ ß \lambda \varepsilon \psi \eta \zeta$.

ミク́ $\mu \alpha v \sigma \eta \pi \rho o i ̈ o ́ v \tau \omega v$

 $\alpha \pi \varepsilon ı \kappa$ ví̧ovial ol кívסuvol.

- Провı $\delta о \pi о џ \tau \iota к \eta ́ ~ \lambda \varepsilon ́ \xi ŋ \eta: ~ A v \tau o ́ ~ \delta \varepsilon і ́ \chi v \varepsilon ı ~ \tau \omega ́ \rho \alpha ~ \tau \eta ~ \sigma о \beta \alpha \rho o ́ \tau \eta \tau \alpha ~ \tau о v ~ к ı v \delta u ́ v o v ~ \pi . \chi . ~$
 "Тоз̆ко́".
 $\sigma u ́ \gamma \kappa \rho \iota \sigma \eta ~ \mu \varepsilon \tau \varepsilon ́ \sigma \sigma \varepsilon \rho ı \varsigma ~ \varphi \rho \alpha ́ \sigma \varepsilon ı \varsigma ~ \kappa เ v \delta v ́ v o v ~ \sigma \tau о ~ \pi \alpha \lambda ı o ́ ~ D S D . ~$
 $\chi р \eta \sigma \mu о \pi о \not ŋ \theta \varepsilon i ́$.
 1107/2009 $\varepsilon v \delta \varepsilon ́ \chi \varepsilon \tau \alpha ı ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ v \alpha ~ \alpha \pi \alpha ı \tau о v ́ v ~ \pi \rho o ́ \sigma \theta \varepsilon \tau \eta ~ \varepsilon \pi ı \sigma \eta ́ \mu \alpha v \sigma \eta ~ \delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta s ~$
 каı $\delta \iota \alpha \sigma \tau \eta \mu \alpha \tau \alpha$ боүкоцıбף́s.

 CLP, 2020):

Гєvıкє́ऽ $\pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma$

 аvóүкпร.
 об $\eta \gamma \dot{\varepsilon} \varepsilon \varsigma \pi \rho \imath v \alpha \pi o ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta »$.

- Tótos $\delta \rho \alpha ́ \sigma \eta s ~ \tau о v ~ \varphi v \tau о \pi \rho о б \tau \alpha \tau \varepsilon v \tau ı к о и ́ ~ \pi \rho о і ̈ o ́ v \tau о s ~(\pi . \chi . ~ \varepsilon v \tau о \mu о к т о ́ v о, ~$
 סрáбๆร.
 $\sigma \nu \mu \pi v ́ \kappa v \omega \mu \alpha \kappa . \lambda \pi$.).

 $\chi \rho \eta \sigma \mu о \pi о \not ŋ \theta \varepsilon i ́ ~ \eta ́ ~ \delta \varepsilon v ~ \pi \rho \varepsilon ́ \pi \varepsilon \iota ~ v \alpha ~ \chi \rho \eta \sigma \mu о \pi о э \eta \theta \varepsilon i ́ . ~$
甲итол $о \sigma \tau \alpha \tau \varepsilon \cup \tau \iota к о ́ ~ \pi \rho о і ̈ o ́ v ~(\pi . \chi . ~ \varepsilon \pi \alpha \gamma \gamma \varepsilon \lambda \mu \alpha \tau i \varepsilon \varsigma, ~ \varepsilon \rho \alpha \sigma \iota \tau \varepsilon ́ \chi \nu \varepsilon \varsigma) . ~$
 $\alpha \pi \alpha ı \varepsilon$ ít $\alpha 1, \tau \eta \varsigma ~ \mu \varepsilon ́ \gamma ı \sigma \tau \eta \varsigma ~ \delta o ́ \sigma \eta \varsigma ~ \alpha v \alpha ́ ~ \varepsilon \kappa \tau \alpha ́ \rho ı o ~ \alpha v \alpha ́ ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ к \alpha ı ~ \tau о v ~ \mu \varepsilon ́ \gamma ı \tau \tau о v ~$

 $\kappa \alpha \lambda \lambda \iota \varepsilon ́ \rho \gamma \varepsilon ı \alpha \varsigma ~ / ~ \sigma \pi о \rho \alpha ́ ~ \eta ́ ~ \varphi v ́ \tau \varepsilon v \sigma \eta ~ \tau \omega v ~ \varepsilon \pi о ́ \mu \varepsilon v \omega v ~ к \alpha \lambda \lambda ı \varepsilon \rho \gamma \varepsilon ı \dot{v ~ / ~} \pi \rho o ́ \sigma \beta \alpha \sigma \eta$

- $\Lambda \varepsilon \pi \tau о \mu \varepsilon ́ \rho \varepsilon ⿺ \varepsilon \varsigma ~ \gamma i \alpha ~ \pi ı \theta \alpha v \eta ́ ~ \varphi \cup \tau о \tau о \xi ̆ ю о ́ т \eta \tau \alpha, ~ \varepsilon v \alpha ı \sigma \theta \eta \sigma i ́ \alpha ~ \sigma \tau \eta \nu ~ \pi о ю к \lambda \lambda i \alpha ~ к \alpha ı ~$ тטұо́v $\alpha \lambda \lambda \varepsilon \varsigma ~ \alpha ́ \mu \varepsilon \sigma \varepsilon \varsigma ~ \eta ́ ~ \varepsilon ́ \mu \mu \varepsilon \sigma \varepsilon \varsigma ~ \alpha \rho \vee \eta \tau ı к \varepsilon ́ \varsigma ~ \pi \alpha \rho \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \varepsilon \varsigma ~ \sigma \varepsilon ~ \varphi \cup \tau \alpha ́ ~ \eta ́ ~ \pi \rho о і ̈ o ́ v \tau \alpha ~$

- 'Oлоv єívaı $\alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau, ~ \eta ~ \eta \mu \varepsilon \rho о \mu \eta v i ́ \alpha ~ \lambda \eta ŋ \eta \eta \varsigma ~ \gamma ı \alpha ~ \tau ı \varsigma ~ \sigma u v \eta ́ \theta \varepsilon ı \varsigma ~ \sigma u v \theta \eta ́ к \varepsilon \varsigma ~$ $\alpha \pi \circ$ Ǿккеvбŋร.

 $\mu \varepsilon$ tov каvovıб μ ó REACH).

 vтокатпүорі́єऽ:

о Eiঠıкоí кívסvvoı π ov $\sigma \chi \varepsilon \tau i ́ \zeta o v \tau \alpha ı \mu \varepsilon ~ \tau o v ~ \alpha ́ v \theta \rho \omega \pi o ~(R S h) . ~$.
о Eıঠıкоі́ кívסvvoı π оv $\sigma \chi \varepsilon \tau i ́ \zeta o v \tau \alpha ı ~ \mu \varepsilon ~ \tau о ~ \pi \varepsilon \rho ı \beta \alpha ́ \lambda \lambda о v ~(R S e) . ~$

 (SPA).
о Еı $\delta \iota \kappa \varepsilon ́ \varsigma ~ \pi \rho о \varphi \cup \lambda \alpha ́ \xi \varepsilon เ \varsigma ~ \alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \alpha \varsigma ~ \gamma ı \alpha ~ \tau \alpha ~ \tau \rho \omega \kappa \tau \iota к о к \tau о ́ v \alpha ~(S P r) . ~$

 толототиц́vєऽ φ ро́бєıऽ.

Hazard pictograms under CLP	Danger symbols under DSD
Signal word:	Indications of danger:
Danger	Toxic Dangerous for the environment
5 Hazard statements under CLP	4 Risk phrases under DSD
Toxic if swallowed or if inhaled ${ }^{5}$	Toxic by inhalation and if swallowed
Causes severe skin burns and eye damage	Causes burns
May cause an allergic skin reaction	May cause sensitisation by inhalation and by skin contact
May cause allergy or asthma symptoms or breathing difficulties if inhaled	
Very toxic to aquatic life	Very toxic to aquatic organisms
Selection from ca. 30 precautionary statements	S: (1/2-)26-36/37/39-45-61

H O入ок入np $\omega \mu \varepsilon ́ v \eta ~ \delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta ~ \pi \alpha \rho \alpha \sigma i ́ t \omega v ~$

＇Evas á $\lambda \lambda$ os $\sigma \eta \mu \alpha v \tau ı \kappa o ́ s ~ к \alpha v o v i \sigma \mu o ́ s ~ \tau \eta s ~ E . E . ~ \sigma \tau о v ~ \tau о \mu \varepsilon ́ \alpha ~ \tau \eta \varsigma ~ \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha s ~ \tau \omega v ~$ ка入入ıєрүєเต́v $\pi \varepsilon \rho ı \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \tau \eta \nu ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ \tau \eta \varsigma ~ О \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \eta \varsigma ~ \Delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta \varsigma ~$

 $\varepsilon \lambda \varepsilon ́ \gamma \chi \sigma v \pi \alpha \rho \alpha \sigma i ́ t \omega v$ каı η $\mu \varepsilon \tau \varepsilon ́ \pi \varepsilon \iota \tau \alpha ~ \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ~ \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \omega \nu ~ \mu \varepsilon ́ \tau \rho \omega v ~ \pi о v$

 $\tau \omega v \delta \rho \alpha ́ \sigma \varepsilon \omega v \pi 0 v$ opí̧ov $\alpha \alpha \iota ~ \sigma \tau \eta v$ O $\delta \eta \gamma i ́ \alpha$ (Commission, 2019).

 $\pi ı$ влı入єктько́ $\pi \rho о і ̈ о ́ v \tau \alpha, \pi \rho о \tau \rho \varepsilon ́ \pi о v \tau \alpha \varsigma ~ \varepsilon \pi \alpha \nu \alpha \lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v \varepsilon \varsigma ~ \varepsilon \varphi \alpha \rho \mu о \gamma \varepsilon ́ \varsigma ~ \eta ́ ~ \mu i ́ \gamma \mu \alpha \tau \alpha$
 (Commission, 2019).

 д́ $\mu \varepsilon \sigma \alpha$ $\sigma \tau \eta \gamma \varepsilon \omega p \gamma i ́ \alpha$ каı $\varepsilon ́ \mu \mu \varepsilon \sigma \alpha ~ \sigma \tau \eta \nu$ коıvตvía (Ehi-Eromosele, Nwinyi, \& Ajani, 2013).

- H IPM $\beta \varepsilon \lambda \tau \imath \omega ́ v \varepsilon ı ~ \tau о ~ \kappa \varepsilon ́ \rho \delta o \varsigma . ~ \Delta \varepsilon \delta о \mu \varepsilon ́ v o v ~ o ́ \tau ı ~ \tau о ~ \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha ~ I P M ~ \varepsilon \varphi \alpha \rho \mu o ́ \zeta ̌ є ~ \tau ı \varsigma ~$

 $\alpha \pi o ́ ~ \pi \alpha \rho \alpha ́ \sigma \iota \tau \alpha$.
 бє тонвís $\alpha \pi \alpha \sigma \chi o ́ \lambda \eta \sigma \eta \varsigma, ~ \delta \eta \mu o ́ \sigma ા \alpha \varsigma ~ v \gamma \varepsilon i ́ \alpha \varsigma ~ к \alpha ı ~ \varepsilon \cup \eta \mu \varepsilon \rho i ́ \alpha \varsigma ~ \alpha \tau о ́ \mu \omega v ~ \pi о v ~$

 $\mu \varepsilon ́ \chi \rho \imath ~ \sigma \tau \imath \gamma \mu \eta ́ \varsigma, ~ v \pi \alpha ́ \rho \chi o v v ~ \varepsilon \pi i ́ \sigma \eta \varsigma ~ o \rho ı \sigma \mu \varepsilon ́ v \alpha ~ \mu \varepsilon ı о v \varepsilon \kappa \tau \eta ́ \mu \alpha \tau \alpha ~(E h i-E r o m o s e l e ~ e t ~ a l ., ~$ 2013):
- 'Eva $\pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha$ IPM $\alpha \pi \alpha ı \tau \varepsilon i ́ ~ v \psi \eta \lambda o ́ \tau \varepsilon \rho o ~ \beta \alpha \theta \mu o ́ ~ \delta ı \alpha \chi \varepsilon i ́ p ı \sigma \eta s . ~ H ~ \lambda \eta ́ \psi \eta ~$
 $\alpha \pi \alpha ı \tau \varepsilon i ́ ~ \pi \rho о \eta \gamma \mu \varepsilon ́ v o ~ \sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ ~ к \alpha l ~ \omega \varsigma ~ \varepsilon \kappa ~ \tau о и ́ \tau о v, ~ v \psi \eta \lambda o ́ \tau \varepsilon \rho o ~ \beta \alpha \theta \mu o ́ ~$
 $\kappa \alpha \lambda \lambda 1 \varepsilon ́ \rho \gamma \varepsilon \omega_{\varsigma} \gamma 1 \alpha \tau \eta \nu \pi \rho o ́ \beta \lambda \varepsilon \psi \eta \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega \nu \alpha \pi o ́ ~ \varepsilon \pi \kappa \beta \lambda \alpha \beta \varepsilon i ́ \varsigma ~ о \rho \gamma \alpha \nu \iota \sigma \mu о v ́ \varsigma$,

 $\alpha v \alpha \mu \varepsilon v o ́ \mu \varepsilon v \varepsilon \varsigma ~ \zeta \eta \mu \varepsilon \varepsilon ́ \varsigma ~ \alpha \pi o ́ ~ \pi \alpha \rho \alpha ́ \sigma i \tau \alpha, ~ \varepsilon v \omega ́ ~ \theta \alpha ~ \delta i ́ v o v v ~ \sigma \tau \eta \nu ~ к \alpha \lambda \lambda i \varepsilon ́ \rho \gamma \varepsilon ા \alpha ~$

 $\alpha v i ́ \chi v \varepsilon v \sigma \eta ~ \pi \varepsilon \delta i ́ o v ~ \alpha \pi \alpha ı \tau \varepsilon i ́ ~ \chi \rho o ́ v o . ~ \Omega \sigma \tau o ́ \sigma o, ~ \alpha v \tau \varepsilon ́ s ~ o l ~ \pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \varepsilon i ́ v \alpha ı ~$
 X $\omega \rho i ́ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \tau ı \varsigma ~ \pi \lambda \eta \rho о \varphi о р i ́ \varepsilon \varsigma ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~ \delta v v \alpha \tau \eta ́ ~ \eta ~ \lambda \eta ́ \psi \eta ~ \varepsilon ́ \xi \cup \pi \nu \omega v ~ \alpha \pi о \varphi \alpha ́ \sigma \varepsilon \omega v ~$ бıaxeipions.

 $\varepsilon \vee \alpha \lambda \lambda \alpha \kappa \tau \iota \kappa o ́ ~ \sigma \chi \varepsilon ́ \delta \iota \circ ~ \sigma \varepsilon ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \varepsilon \mu \varphi \alpha ́ v \iota \sigma \eta \varsigma ~ \tau \varepsilon ́ \tau о เ \omega v ~ \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v$.

Кєфа́入 α เо 2° - Вı $\beta \lambda ı о ү \rho \alpha ф ı к \grave{~}$ єாıбкórпбп

Н $\beta \imath \beta \lambda \imath о \gamma \rho \alpha \varphi i ́ \alpha ~ \varepsilon ́ \chi \varepsilon ı ~ \alpha \sigma \chi о \lambda \eta \theta \varepsilon i ́ ~ \varepsilon \pi ı \sigma \tau \alpha \mu \varepsilon ́ v \omega \varsigma ~ \mu \varepsilon ~ \tau \alpha ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha ~ \gamma \nu \omega ́ \sigma \eta s ~ к \alpha ı ~ \tau ı s ~$

 каӨорıбтıко́ ро́ $\lambda о$ бтıऽ $\alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i ́ \varepsilon \varsigma ~ \psi є к \alpha \sigma \mu о v ́ ~ \sigma \varepsilon ~ \alpha \gamma \rho о к т \eta ́ \mu \alpha \tau \alpha, ~ \alpha \lambda \lambda \alpha ́ ~ \lambda i ́ \gamma \alpha ~$

 $\alpha \rho \vee \eta \tau \iota \alpha \alpha(\mathrm{P}<0.01) \mu \varepsilon \alpha v \tau \varepsilon ́ \varsigma \tau \iota \varsigma \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \varepsilon ́ \varsigma$.

甲оточа́риака вívaı $\alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau \varepsilon \varsigma ~ \gamma ı \alpha ~ \tau \eta ~ \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta ~ \tau \eta \varsigma ~ \sigma \nu \mu \pi \varepsilon \rho ı \varphi о \rho \alpha ́ \varsigma ~ \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma ~ \tau \omega v$

 Прє́лєє va $\pi \rho о \omega \theta \eta$ Өои́v oı $\pi \lambda \eta \rho о ч о \rho i ́ \varepsilon \varsigma ~ \gamma ı \alpha ~ \tau \alpha ~ \varphi \cup \tau о \varphi \alpha ́ \rho \mu \alpha к \alpha, ~ o l ~ о \delta \eta \gamma i ́ \varepsilon \varsigma ~ к \alpha ı ~ \eta ~$

 каı 甲ขбıко́ $\pi \varepsilon \rho ı \beta \dot{\alpha} \lambda \lambda$ оv $\alpha \pi \alpha ı \tau \varepsilon i ́ ~ \tau \eta \nu ~ к \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \eta ~ \alpha v \alpha \gamma v ต ́ \rho ı \sigma \eta ~ \tau \eta \varsigma ~ \sigma v \mu \pi \varepsilon \rho ı \varphi о \rho \alpha ́ \varsigma ~ к \alpha ı ~$

 $\alpha \gamma \rho о к \tau \eta \mu \alpha ́ \tau \omega v$ б $\tau \eta \nu$ По $\lambda \omega v i ́ \alpha$ бтo Farm Accountancy Data Network (FADN). M ε
 $\alpha \pi$ отроти́ऽ кıvঠúvov.
 $\mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \alpha \pi о \sigma \tau \rho о \varphi \eta ́ ~ \kappa ı v \delta v ́ v o v ~(S u l e w s k i ~ e t ~ a l, ~ 2020) . ~ H ~ \sigma \tau \alpha ́ \sigma \eta ~ \tau o v \varsigma ~ \alpha \pi \varepsilon ́ v \alpha \nu \tau ı ~ \sigma \tau о v ~$

 $\alpha \pi$ отроти́ऽ кıvঠúvov.

 $\pi \alpha \rho \alpha к о \lambda о v ́ \theta \eta \sigma \eta$ бто Trentino, $\tau \eta \nu \varepsilon ́ \lambda \lambda \varepsilon \iota \psi \eta \pi \lambda \eta \rho \rho o v \varsigma \varepsilon \lambda \varepsilon ́ \gamma \chi \circ v \pi \alpha \rho \alpha \sigma i ́ \tau \omega \nu \sigma \tau o$ Sharon
 B $\varepsilon \sigma \tau \varphi \alpha \lambda i \alpha$.

Ot Lithourgidis et al (2016) $\pi 0 v \varepsilon \pi i ́ \sigma \eta \varsigma ~ \alpha \xi ॄ 10 \lambda o ́ \gamma \eta \sigma \alpha \nu ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \tau \omega v ~ \pi \rho о і ̈ o ́ v \tau \omega \nu$

Oı $\pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho о \iota ~ \alpha \gamma \rho о ́ \tau \varepsilon \varsigma ~ \varepsilon ́ \delta \varepsilon ı \xi \alpha \nu ~ v \psi \eta \lambda \lambda \alpha ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha ~ \varepsilon v \alpha ı \sigma \theta \eta \tau о \pi о i ́ \eta \sigma \eta \varsigma ~ \gamma ı \alpha ~ \tau о v ~ \pi ı \theta \alpha v o ́$

 $\chi \rho \eta ́ \sigma \eta ~ \varphi v \tau о \varphi \alpha \rho \mu \alpha ́ к \omega v, ~ \eta ~ \sigma v \mu \mu о ́ \rho \varphi \omega \sigma \eta ~ \tau \omega v ~ \alpha \gamma \rho о \tau ஸ ́ v ~ \mu \varepsilon ~ \tau ı \varsigma ~ \pi \varepsilon \rho ı \sigma \sigma о ́ \tau \varepsilon \rho \varepsilon \varsigma ~$

 $\tau \eta \sigma v \chi v o ́ \tau \eta \tau \alpha$.

 $\pi \circ \cup \beta \varepsilon \lambda \tau 1 \omega ́ v o v v ~ \tau \eta ~ \gamma \nu \omega ́ \sigma \eta ~ \tau \omega v ~ \alpha \gamma \rho о \tau \omega ́ v ~ \sigma \chi \varepsilon \tau \iota \kappa \alpha ́ ~ \mu \varepsilon ~ \tau \eta ~ \lambda i ́ \pi \alpha v \sigma \eta, ~ \tau \eta ~ \chi \rho \eta ं \sigma \eta$

 $\beta \alpha \sigma ı \kappa о ́=~ \pi \alpha \rho \alpha ́ \gamma о \nu \tau \varepsilon \varsigma ~ \pi о v ~ \varepsilon \mu \pi \lambda \varepsilon ́ \kappa о \nu \tau \alpha ı ~ \sigma \tau \eta ~ \lambda \eta ́ \psi \eta ~ \alpha \pi о \varphi \alpha ́ \sigma \varepsilon \omega \nu ~ \tau \omega \nu ~ \alpha \gamma \rho о \tau \omega ́ \nu ~ \sigma \tau \eta \nu$

 $\varepsilon \nu \tau о ́ \mu \omega v$ бє катабто́бєєऽ $\varepsilon \pi \imath \delta \eta \mu i ́ \alpha \varsigma$.

 $\tau \omega v \alpha \gamma \rho о \tau \omega ́ v \lambda \alpha \mu \beta \alpha ́ v \varepsilon \iota ~ \sigma v \mu \beta о \nu \lambda \varepsilon ́ s ~ \varphi v \tau о \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma ~ \alpha \pi о ́ ~ \varepsilon \mu \pi о ́ \rho о v \varsigma ~ \varphi v \tau о \varphi \alpha \rho \mu \alpha ́ к \omega v$, $\varepsilon v ต ́ ~ \sigma \tau о ~ N \varepsilon \pi \alpha ́ \lambda, ~ \eta ~ \pi \lambda \varepsilon ı о \psi \eta \varphi i ́ \alpha ~ \tau \omega v ~ \alpha \gamma \rho о \tau ஸ ́ v ~(69 \%) ~ \lambda \alpha \mu ß \alpha ́ v \varepsilon ı ~ \alpha \pi о \varphi \alpha ́ \sigma \varepsilon ı \varsigma ~$

 IPM $\sigma \varepsilon \varepsilon \pi i \lambda \varepsilon \gamma \mu \varepsilon ́ v \alpha ~ \chi \omega \rho ı \alpha ́ ~ \varepsilon ́ \varphi \varepsilon \rho \varepsilon ~ \mu \varepsilon i ́ \omega \sigma \eta ~ 20-65 \% ~ \sigma \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \varphi \cup \tau о \varphi \alpha \rho \mu \alpha ́ к \omega v ~ \sigma \varepsilon ~$

H $\mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau \omega \nu$ Erdougan \& Gökdougan (2017) $\pi \rho \alpha \gamma \mu \alpha \tau о \pi о$ ŋ́ $\theta \eta \kappa \varepsilon ~ \pi \rho о к \varepsilon \mu \varepsilon ́ v o v ~ v \alpha$

 $\pi \varepsilon \rho ı \chi \emptyset ́ ~ M e r k e z, ~ D e r i n k u y u ~ к \alpha ı ~ U ̈ r g u ̈ p, ~ \tau о ~ 2016 . ~ \Omega \varsigma ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \eta \varsigma ~ \varepsilon ́ \rho \varepsilon v v \alpha \varsigma, ~$

 $\sigma \varepsilon \varepsilon \pi i ́ \pi \varepsilon \delta$ o $\pi \varepsilon i ́ v \alpha \varsigma . ~ O ı ~ \alpha \gamma \rho o ́ \tau \varepsilon \varsigma ~ \varepsilon \xi ̌ \varepsilon ́ \varphi \rho \alpha \sigma \alpha v$ ótı $\lambda \alpha \mu \beta \alpha ́ v o v v v \pi о \sigma \tau \eta ́ \rho ı \xi ̌ \eta ~ \alpha \pi o ́ ~ \varepsilon \mu \pi o ́ \rho o v s$

 β ъотарабітокто́vои.

 тоv̧ $\sigma \tau \eta \nu$ vүદía εv о́s $\alpha \gamma \rho o ́ \tau \eta ~ \mu \pi о \rho о v ́ v ~ v \alpha ~ \pi \rho о \beta \lambda \varepsilon ́ \psi о v v ~ \tau \eta \nu ~ \pi \rho о \theta \nu \mu i ́ \alpha ~ \tau о v ~ \alpha \gamma \rho o ́ \tau \eta ~ v \alpha ~$

 $\kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \varepsilon ́ \varsigma ~ \tau \rho о \varphi i ́ \mu \omega v$ óбо к$\alpha \iota ~ \sigma \varepsilon ~ \alpha \gamma \rho о ́ \tau \varepsilon \varsigma ~(P e t r e s c u-M a g ~ e t ~ a l ., ~ 2019) . ~$.

 (SPSS). T α алотє $\lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \alpha \pi о к \alpha ́ \lambda \nu \psi \alpha \nu ~ o ́ \tau ı ~ \alpha \nu ~ к \alpha ı ~ \eta ~ \sigma ט v о \lambda ı к ́ ~ к \alpha \tau \alpha v \alpha ́ \lambda \omega \sigma \eta ~$
 $\pi \alpha \rho \varepsilon ́ \mu \varepsilon ı v \alpha \nu ~ v \psi \eta \lambda \varepsilon ́ \varsigma . ~ O t ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho о ı ~ \alpha \pi o ́ ~ \tau o v \varsigma ~ \varepsilon \rho \omega \tau \eta \forall \varepsilon ́ v \tau \varepsilon \varsigma ~ \sigma \tau \eta \nu ~ \pi \varepsilon \rho ı \chi \emptyset ́ ~ \pi о v ~$

 $\alpha \varepsilon ́ \rho \alpha ~ к \alpha ı ~ \tau o u \varsigma ~ \omega \varphi \varepsilon ́ \lambda \mu \mu o v \varsigma ~ o \rho \gamma \alpha v ı \sigma \mu о v ́ \varsigma . ~ M o ́ v o ~ \tau o ~ 20 \% ~ \tau \omega v ~ \varepsilon \rho \omega \tau \eta \theta \varepsilon ́ v \tau \omega v ~ \varepsilon ́ \lambda \alpha \beta \varepsilon ~ \tau ı \varsigma ~$

 $\alpha \pi$ ó $\pi \alpha \rho \alpha ́ \sigma ı \tau \alpha$ (Shetty et al., 2010).

 $\gamma \varepsilon \omega \rho \gamma i ́ \alpha \varsigma ~ \sigma \tau \eta \nu$ Iv $\delta i ́ \alpha ~ \varepsilon i ́ v \alpha ı ~ \alpha \mu \varepsilon \lambda \eta \tau \varepsilon ́ \alpha . ~ Y \pi \alpha ́ \rho \chi \varepsilon ı ~ \tau \varepsilon \rho \alpha ́ \sigma \tau ı о ~ \pi \varepsilon \rho ı \theta ต ́ \rho ı o ~ \gamma ı \alpha ~ \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \varepsilon \varsigma ~$

 $\pi \rho о ́ \sigma \theta \varepsilon \tau \eta ~ \varepsilon \pi \iota \beta \alpha ́ \rho v \nu \sigma \eta ~ \pi о v ~ \pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ \varepsilon \xi \varepsilon \tau \alpha \sigma \tau \varepsilon i ́ ~ \sigma о \beta \alpha \rho \alpha ́ ~ \sigma \chi \varepsilon \tau ı \alpha \alpha ́ ~ \mu \varepsilon ~ \tau \alpha ~ \mu ו \kappa \rho \alpha ́ ~ к \alpha ı ~$ $\mu \varepsilon \sigma \alpha i ́ \alpha ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha ~ \varepsilon \kappa \mu \varepsilon \tau \alpha ́ \lambda \lambda \varepsilon v \sigma \eta \varsigma ~ \sigma \tau \eta v ~ I v \delta i ́ \alpha . ~$

Kєфа́入入ıo 3°－MعӨoסo入opía tns غ́peuvas

Eрєvvŋтıкós $\sigma \kappa о \pi о ́ \varsigma-\varepsilon \rho \omega \tau \eta ́ \mu \alpha \tau \alpha$

 $\pi \rho \alpha \kappa \tau \iota \kappa \varepsilon ́ \varsigma ~ v i o \theta \varepsilon \tau \tau о ์ v ~ \omega \varsigma ~ \pi \rho о \varsigma ~ \tau \eta v ~ \varepsilon \varphi \alpha \rho \mu о \gamma ŋ ́ ~ \tau о и \varsigma ; ~ ;$
 $\gamma ı \alpha \tau \eta \chi \rho \eta ́ \sigma \eta \tau \omega \nu$ фvточарна́кюv；

$\Sigma \chi \varepsilon \delta \iota \alpha \sigma \mu o ́ s ~ £ ́ \rho \varepsilon v v a s$

 Likert каı к $\lambda \varepsilon \iota \sigma \tau о v ́ ~ \tau и ́ \pi о v ~ \varepsilon \pi i \lambda \varepsilon \gamma \mu \varepsilon ́ v \omega v ~ \varepsilon \rho \omega \tau \eta ́ \sigma \varepsilon \omega v, ~ \beta \alpha \sigma \iota \sigma \mu \varepsilon ́ v o ~ \sigma \tau о ~ \pi \rho o ́ \tau v \pi о ~$

 $\gamma 1 \alpha$ тоvs $\alpha \sigma \varphi \alpha \lambda \varepsilon i ́ s ~ \tau \rho o ́ \pi о v s ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ s ~ к \alpha ı ~ \delta ı \alpha \tau \eta ́ \rho \eta \sigma \eta s ~ \tau о v \varsigma ~ \varepsilon i ́ v \alpha ı ~ \mu \varepsilon \tau \rho \eta ́ \sigma \mu \varepsilon \varsigma . ~$

 $\varepsilon \rho \dot{\tau} \tau \mu \alpha$ ．

 $\alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau о ~ \sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon$ то $2^{\circ} \varepsilon \rho \varepsilon v \nu \eta \tau \iota \kappa o ́ ~ \varepsilon \rho ต ́ \tau \eta \mu \alpha . ~ H ~ \delta є \varepsilon \rho \varepsilon v ́ v \eta \sigma \eta ~ \tau \omega v ~ \sigma v \sigma \chi \varepsilon \tau i ́ \sigma \varepsilon \omega v$

 (Фарцо́кпя, 2017).

$\Pi \lambda \eta \theta v \sigma \mu o ́ s-\Delta \varepsilon \dot{́} \gamma \mu \alpha$

Ep $\gamma \alpha \lambda \varepsilon_{i ́ o}$

 $\mu \varepsilon \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \eta \quad \chi \rho \eta ́ \sigma \eta$ тov Microsoft Office Excel $2016 \gamma 1 \alpha$ $\sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ ~ \tau \omega \nu$ $\gamma \rho \alpha \varphi \eta \mu \alpha ́ \tau \omega v$.

 غ́ $\lambda \varepsilon \gamma \chi \circ \varsigma$ Kruskal Wallis (Pov́ббoৎ \& Tб $\alpha \circ v ́ \sigma \eta \varsigma, 2011$).

HӨıка́ Zqтŋ́ $\mu \alpha \tau \alpha$

 оı $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ к \alpha v o ́ v є \varsigma: ~$

 кошо́тทта.

- $\Delta ⿺ \alpha \sigma \alpha \varphi \eta v i ́ \sigma \tau \eta \kappa \varepsilon$ ó ó oı $\sigma \nu \mu \mu \varepsilon \tau \varepsilon ́ \chi о v \tau \varepsilon \varsigma ~ \mu \pi о \rho о v ́ v ~ v \alpha ~ \alpha \pi о \chi \omega \rho \eta ́ \sigma o v v ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \varepsilon ́ \rho \varepsilon v v \alpha ~$
 $\sigma \cup \mu \pi \lambda \eta \dot{\rho} \omega \sigma \eta \tau \omega v \delta \varepsilon \delta \circ \mu \varepsilon ́ v \omega v$.

Н $\alpha \xi \xi ı \pi ı \sigma \tau i ́ \alpha ~ \tau \omega v ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \theta \eta \kappa \alpha \nu \gamma 1 \alpha \kappa \alpha ́ \theta \varepsilon ~ \pi \alpha \rho \alpha ́ \gamma o v \tau \alpha ~ \tau \eta \varsigma ~ \varepsilon ́ \rho \varepsilon v v \alpha \varsigma ~ \mu \varepsilon ~ \chi \rho \eta ́ \sigma \eta$

А $\pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$

$\Delta \eta \mu о \gamma \rho \alpha \varphi \iota \kappa \alpha ́ \chi \alpha \rho \alpha к \tau \eta \rho ı \sigma \tau \iota \kappa \alpha ́$

[^1]

Гра́чпиа 2: Морчштıко́ єпілєвбо

Гра́чๆ $\mu \alpha$ 4: 'E $\delta \rho \alpha$ к $\alpha \lambda \lambda \iota \varepsilon ́ \rho \gamma \varepsilon ı \alpha \varsigma ~$

Гра́чпна 6: Катд́ $ө \iota \sigma \eta ~ ү \iota \alpha ~ ү \varepsilon \omega \rho ү เ к \alpha ́ ~ \varphi \alpha ́ \rho \mu \alpha к \alpha ~$

 оvо $\mu \alpha \sigma \tau к \varepsilon ́ \varsigma ~ \mu \varepsilon \tau \alpha \beta \lambda \eta \tau \varepsilon ́ \varsigma$.

Проки́лтєı ótı то 59,0\% ($\mathrm{N}=89$) $\alpha \pi \alpha v \tau \alpha ́ ~ \sigma \omega \sigma \tau \alpha ́ ~ \pi \omega \varsigma ~ \lambda \alpha \mu \beta \alpha ́ v \varepsilon ı ~ \tau \eta v ~ \alpha \pi o ́ \varphi \alpha \sigma \eta ~ v \alpha ~$
 кат $\alpha \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \varepsilon \mu \pi о р і ́ \alpha s ~ \gamma \varepsilon \omega \rho \gamma ı к ө ́ v ~ \varphi \alpha \rho \mu \alpha ́ к \omega v », ~ \tau о ~ 25 \% ~(~ N=37) ~ « \mu \varepsilon ~ \tau \eta ~ \beta о \eta ́ \theta \varepsilon ı \alpha ~$

 $\gamma \vee ต ́ \mu \eta ~ \tau \omega v \alpha \dot{\alpha} \lambda \lambda \omega v » . \Sigma \tau \eta \sigma v v \varepsilon ́ \chi \varepsilon \iota \alpha$, то $61 \% ~(N=92) \alpha v \varepsilon ́ \varphi \varepsilon \rho \varepsilon ~ \pi \omega \varsigma ~ \eta ~ \varepsilon \tau \iota к \varepsilon ́ \tau \alpha ~ \tau о v ~$

 غ́ $\chi \varepsilon ı ~ \delta о к \mu \alpha \sigma \tau \varepsilon i ́ ~(\eta ́ ~ \varepsilon ́ \chi о v v ~ \gamma i ́ v \varepsilon ı ~ \pi \varepsilon ı \rho \alpha ́ \mu \alpha \tau \alpha) » . ~ \Sigma \chi \varepsilon \tau \iota \kappa \alpha ́ ~ \mu \varepsilon ~ \tau \alpha ~ \gamma \varepsilon \omega р \gamma ı к \alpha ́ ~ \varphi \alpha ́ \rho \mu \alpha к \alpha, ~ \tau о ~$

 фо́ $\rho \mu \alpha \kappa \alpha$ ».

 $\varepsilon \pi ı \tau \cup \chi i ́ \alpha ~ \alpha v \tau ı \mu \varepsilon \tau \omega \pi i ́ \sigma \varepsilon \imath ~ \tau о ~ \varepsilon ́ v \tau о \mu о ~ \alpha v \tau o ́ » . ~$

 то $13 \%(\mathrm{~N}=20)$ ótı «Eívaı $\pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \tau \eta \varsigma ~ \varepsilon \tau \alpha ı \rho \varepsilon i ́ \alpha \varsigma ~ \pi о v ~ \tau о ~ \delta ı \alpha к ı v \varepsilon i ́ ~ \gamma ı \alpha ~ v \alpha ~ \mu \eta \nu ~ \varepsilon ́ \chi \varepsilon ı ~$

 аүора́», то 49\% ($\mathrm{N}=73$) $\alpha \pi \alpha ́ v \tau \eta \sigma \varepsilon ~ \sigma \omega \sigma \tau \alpha ́ ~ o ́ \tau \imath ~ « \pi о \tau \varepsilon ์ », ~ \tau о ~ 27 \% ~(N=40) ~ o ́ \tau \imath ~ « M o ́ v o ~ \alpha v ~$ $\mu \circ v \pi \varepsilon \imath$ о $\gamma \varepsilon \omega \pi$ óvos ótı عíval $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa o ́ », ~ \tau о ~ 13 \% ~(~ N=19) ~ « M o ́ v o ~ \varepsilon \alpha ́ v ~$

 $\kappa \alpha \lambda \lambda 1 \varepsilon ́ \rho \gamma \varepsilon 1 \alpha »$.

 ŋ́ $\tau \rho \iota \pi \lambda \alpha ́ \sigma ı \alpha ~ \delta o ́ \sigma \eta ~ \varepsilon v o ́ s ~ \gamma v \omega \sigma \tau о v ́ ~ \gamma \varepsilon \omega \rho \gamma ı к о v ́ ~ \varphi \alpha \rho \mu \alpha ́ к о v », ~ \tau о ~ 9 \% ~(N=14) ~ o ́ \tau ı ~ « А v \alpha \zeta ̆ \eta \tau \omega ́ ~$

 $\alpha v \alpha \gamma \rho \alpha ́ \varphi \varepsilon ı \eta$ $\ell \tau \iota \kappa \varepsilon ́ \tau \alpha » . ~$

 ¢ச́คvєı $\sigma \tau \eta ~ \chi ஸ ́ \rho \alpha ~ \mu \alpha \varsigma, ~ \tau о ~ 54 \% ~(~ N=81) ~ \alpha \pi \alpha ́ v \tau \eta \sigma \varepsilon ~ \sigma \omega \sigma \tau \alpha ́ ~ o ́ \tau ı ~ « T o ~ \pi \rho o і ̈ o ́ v ~ \varepsilon i ́ v \alpha ı ~$

 $\delta \varepsilon v \tau \not \mu \omega \rho \varepsilon i ́ \tau \alpha \downarrow$ ало́ $\tau 0 \vee$ vó $\mu 0 »$.
 $43 \% ~(\mathrm{~N}=64)$ «Eíval $\sigma \varepsilon$ к人́ $\theta \varepsilon \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \pi \alpha \rho \alpha ́ v о \mu о », ~ \sigma \varepsilon ~ \pi о \sigma о \sigma \tau o ́ ~ 27 \% ~(~ N=40) ~ o ́ \tau ı ~$

 $\gamma \varepsilon \omega \pi$ о́vo».

 ($\mathrm{N}=39$) ó $\tau ı$ عívaı ó $\lambda \varepsilon \varsigma$ oı $\pi \rho о \alpha v \alpha \varphi \varepsilon \rho о ́ \mu \varepsilon v \varepsilon \varsigma ~ \varepsilon \pi ı \lambda о \gamma \varepsilon ́ \varsigma . ~$

ミтor¢Eío	Kатпү\%орía	N	f\%
		16	11,0
Пós $\lambda \alpha \mu \beta \alpha ́ v \varepsilon \tau \varepsilon \tau \eta \nu$ $\alpha \pi o ́ \varphi \alpha \sigma \eta ~ \gamma 1 \alpha v \alpha$	 	89	59,0
$\chi \rho \eta \sigma \mu$ точ́ббєєє $\gamma \varepsilon \omega \rho \gamma$ ¢о́		37	25,0
фа́риако;		7	5,0
	Акоv́ $\omega \tau \eta \gamma \nu \dot{\mu} \mu \eta \tau \omega \nu \alpha \dot{\alpha} \lambda \lambda \omega \nu$	1	1,0
чарио́кои, то олоі́о $\varepsilon \pi \iota \tau \rho \varepsilon ́ \pi \varepsilon \tau \alpha \iota v \alpha$	$\pi \alpha \rho \alpha \delta \varepsilon ́ \gamma \not \mu \alpha \tau \alpha, \mu \varepsilon \rho \iota \kappa \varepsilon ́ \varsigma \alpha \pi o ́ \tau \iota \varsigma$	52	35,0

$\chi \rho \eta \sigma \mu$ олоп́ $\sigma \omega \sigma \tau \eta \nu$			
	tov		
		92	61,0
	Троч́́ $\omega \omega v$ к $\alpha ı ~ \tau \eta \nu ~ к \alpha \lambda \lambda \lambda \varepsilon ́ \rho \gamma \varepsilon ı \alpha ́ ~ \mu о v ~$		
		5	3,0
		1	1,0
	$\pi \varepsilon \rho \stackrel{\chi}{ }$ ¢́ μ оv		

	22
$\gamma \varepsilon \omega \rho \gamma$ ¢к $¢ \alpha \rho \mu \alpha к \alpha$	

 фарно́коv в $\lambda \alpha \chi ı \tau \tau о \pi о เ \varepsilon i ́ ~ \tau ı \varsigma ~ \delta v \sigma \mu \varepsilon v \varepsilon i ́ \varsigma ~$ $\varepsilon \pi \imath \delta \rho \alpha ́ \sigma \varepsilon ı \varsigma ~ \tau \eta \nu$ vүદía 兀оv $\chi \rho \eta ́ \sigma \tau \eta$, $\kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \eta ์ \kappa \alpha ı$ то $\pi \varepsilon \rho \imath \beta \dot{\alpha} \lambda \lambda$ оv

$\Gamma i \alpha v \alpha \alpha \nu \tau \downarrow \mu \varepsilon \tau \omega \pi i ́ \sigma \omega$ ह́v α غ́vтоцо

$\alpha v \chi \rho \varepsilon i \alpha \sigma \tau \varepsilon i ́ \mu \pi о \rho \varepsilon i ́ v \alpha \varepsilon \pi \lambda \lambda \varepsilon ́ \xi \omega \omega \dot{\alpha} \lambda \lambda 0$
Акодоvөஸ́ то $\pi \rho о ́ \gamma \rho \alpha \mu \mu \alpha \psi \varepsilon \kappa \alpha \sigma \mu \omega ́ v$
$\alpha \dot{\alpha} \lambda \lambda \omega v \pi \alpha \rho \alpha \gamma \omega \gamma \omega ́ v \pi \circ v$ ह́ $\chi \circ \cup v \mu \varepsilon \varepsilon \pi \imath \tau \cup \chi i ́ \alpha ~ 20 \quad 13,0$ $\alpha \nu \tau \mu \varepsilon \tau \omega \pi$ íбєı то ε ह́vто $о$ о $\alpha \tau$ о́

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
 \\
 олоі́o бтŋv \(\varepsilon \tau \iota \kappa \varepsilon ́ \tau \alpha ~ \tau о v ~ \alpha v \alpha \gamma \rho \alpha ́ \varphi \varepsilon ı ~ к \alpha ı ~ \tau о ~\) \\
 Өغ́д \(\omega\) va 兀о \(\chi \rho \eta \sigma \mu о \pi о э ŋ ́ \sigma \omega ~ к \alpha ı ~ \alpha к о \lambda о v \theta \omega ́ ~\) \(\tau \iota \varsigma ~ o \delta \eta \gamma i \varepsilon \varsigma ~ \chi \rho \eta ́ \sigma \varepsilon \omega \varsigma\)
\end{tabular} \& 84 \& 56，0 \\
\hline \multirow{3}{*}{ \(\alpha v \alpha \gamma \rho \alpha ́ \varphi o v \tau \alpha \iota ~ \sigma \tau \eta v \varepsilon \tau \iota \kappa \varepsilon ́ \tau \alpha\) عvós \(\gamma \varepsilon \omega \rho \gamma\) ккои́ чарио́коv} \& Eívaı \(\pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \tau \eta \varsigma ~ \varepsilon \tau \alpha ı \rho \varepsilon i ́ \alpha \varsigma ~ \pi о v ~ \tau о ~\) סıんкıvદí \(\gamma 1 \alpha\) v \(\alpha \mu \eta \nu\) ह́ \(\chi \varepsilon ı ~ \varepsilon v \theta o ́ v \varepsilon \varsigma ~\) \& 20 \& 13，0 \\
\hline \& \begin{tabular}{l}
 \\
 об \(\boldsymbol{\gamma} \boldsymbol{\imath} \varepsilon \varsigma\) \\
Eívaı єvסєıктıкє́s каı а．ророи́v \(\mu \varepsilon \rho \iota \kappa \varepsilon ́ s\), \\
 \(\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha\)
\end{tabular} \& 88

23 \& 59,0

15,0

\hline \& $\pi \rho о$ öv $\tau \alpha \pi \rho о o \rho i \zeta о \nu \tau \alpha ı ~ \gamma ı \alpha \varepsilon \xi \alpha \gamma \omega \gamma \eta ́$ \& 19 \& 13，0

\hline \multirow{4}{*}{| Прıv аүора́бю ह́vа $\gamma \varepsilon \omega \rho \gamma ı к о ́$ фо́риако，$\gamma \iota \alpha$ v $\alpha \beta \varepsilon \beta \alpha \iota \omega \theta$ о́ о́тı |
| :--- |
| غт兀кと́t α ： |} \& \& 35 \& 24，0

\hline \& tov ovoía \& 39 \& 18，0

\hline \& Tov $\alpha \rho ı \theta \mu o ́ ~ \varepsilon ́ \gamma к \rho ı \sigma \eta \varsigma ~ \alpha \pi o ́ ~ \chi \omega ́ \rho \alpha ~ \tau \eta \varsigma ~$ Еирютаїки́я＇Еvตбףs \& 18 \& 12，0

\hline \& | |
| :--- |
| | \& 58 \& 46，0

\hline $\Sigma \varepsilon \pi 0 \imath \varepsilon \varsigma \pi \varepsilon \rho \iota \pi \tau \dot{\sigma} \sigma \varepsilon 1 \varsigma$ $\chi \rho \eta \sigma \mu о \pi о \iota o v ́ \mu \varepsilon$ غ́va $\gamma \varepsilon \omega \rho \gamma เ \kappa o ́$ \& Móvo $\alpha v \mu \circ v \pi \varepsilon ı$ o $\gamma \varepsilon \omega \pi$ óvo̧ ó óı عívaı $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota к о ́$ \& 40 \& 27，0

\hline $\sigma \tau \eta \nu \kappa \alpha \lambda \lambda 1 \varepsilon ́ \rho \gamma \varepsilon \iota \alpha \mu \alpha \varsigma \alpha \lambda \lambda \alpha \dot{\alpha}$ \& Móvo αv ह́ $\chi \varepsilon 1$ ह́ $\gamma \kappa \rho \iota \sigma \eta ~ \gamma 1 \alpha \pi \alpha \rho o ́ \mu о 1 \alpha$ $\kappa \alpha \lambda \lambda 1 \varepsilon ́ \rho \gamma \varepsilon \iota \alpha$ \& 18 \& 12，0

\hline коклорорві́ vó $\mu \boldsymbol{\mu} \boldsymbol{\sigma}$ отף \& \& \&

\hline Е入入ŋๆıкй аүора́； \& к $\alpha \iota$ غ́ $\chi \varepsilon 1$ ह́ $\gamma \kappa \rho ı \sigma \eta ~ \gamma ı \alpha \alpha v \tau o ́$ \& 19 \& 13

\hline
\end{tabular}

Потє́

86 57,0
 $\pi \varepsilon \iota \rho \alpha \mu \tau і$ íouаı $\pi о v$ кик $\lambda о \varphi о р о и ́ v ~ \sigma \varepsilon$ $\alpha \dot{\alpha} \lambda \lambda \varepsilon \varsigma \chi \omega ́ \rho \varepsilon \varsigma$
 $\delta \iota \alpha ́ \sigma \tau \eta \mu \alpha \pi \sigma v \alpha v \alpha \gamma \rho \alpha ́ \varphi \varepsilon ı \eta$ $\varepsilon \tau \iota \kappa \varepsilon ́ \tau \alpha$

K $\alpha v \varepsilon ́ v \alpha \alpha \rho o ́ \beta \lambda \eta \mu \alpha$. Eívaı $\varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho o ~ \tau о$

$\varepsilon \gamma к \varepsilon к \rho \mu \mu \varepsilon ́ v o ~ \sigma \tau \eta \nu$ E $\lambda \lambda \alpha \dot{\alpha} \delta \alpha$ عíval vó $\mu \mu$ о

 $\alpha \pi \omega ́ \lambda \varepsilon 1 \alpha \tau \mu \omega \rho \varepsilon і ́ \tau \alpha 1 \mu \varepsilon \pi \rho о ́ \sigma \tau \iota \mu$ о, $\varphi \cup \lambda \alpha ́ \kappa ı \sigma \eta ~ \kappa \alpha ı ~ \alpha \pi \omega ́ \lambda \varepsilon ı \alpha ~ \varepsilon \pi ı \delta о \tau \eta ́ \sigma \varepsilon \omega v . ~$ $\Delta \varepsilon v$ cíval vó $\mu \not \mu$ o $\alpha \lambda \lambda \alpha$ ó $\alpha \varphi$ ov́ $\varepsilon i ́ v \alpha l ~ \gamma l \alpha ~ \delta ı к \eta ́ ~$
 $\alpha \pi$ ó $\tau 0 v$ vó μ о

 Еえ入ๆขıќ.

Eívaı $\pi \alpha \rho \alpha ́ v o \mu o ~ \varepsilon \varphi o ́ \sigma o v ~ \delta \varepsilon v ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~$
 $\xi \varepsilon v o ́ \gamma \lambda \omega \sigma \sigma \eta$ हтıкธ́ $\tau \alpha$:

Пoıos ε ह́ χ єı $\tau \eta v$ عvӨúvך αv
 оvo $\mu \alpha \sigma$ í α

Eívaı $\sigma \varepsilon \kappa \alpha ́ \theta \varepsilon \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta \pi \alpha \rho \alpha ́ v o \mu o$
64 43,0
 $\gamma \varepsilon \omega \pi$ óvo

\qquad
$\varepsilon \nu \tau о \pi \iota \sigma \theta \varepsilon i ́ \eta ~ \chi \rho \eta ́ \sigma \eta$
$\pi \alpha \rho \alpha ́ v o \mu о v ~ \gamma \varepsilon \omega \rho \gamma ı к о и ́ ~$ чарио́коv；
$\sigma \tau о \kappa \alpha \tau \alpha ́ \sigma \tau \eta \mu \alpha$

O $\pi \alpha \rho \alpha \gamma \omega \gamma о ́ \varsigma$
5537,0
＇O λ oı oı $\alpha v \alpha \varphi \varepsilon \rho o ́ \mu \varepsilon v o ı ~ \sigma \tau \iota \varsigma ~ \alpha ́ \lambda \lambda \varepsilon \varsigma ~ \varepsilon \pi i \lambda о \gamma \varepsilon ́ \varsigma ~$

$\tau \omega v$ 甲vтஸ́v» Kaı $\alpha v \alpha \varphi \varepsilon ́ \rho o u v$
$\varepsilon v \delta \varepsilon i ́ \xi \varepsilon \iota \varsigma ~ к \alpha \tau \alpha \pi о \lambda \varepsilon ́ \mu \eta \sigma \eta \varsigma$
$\varepsilon \nu \tau o ́ \mu \omega v \kappa \alpha \iota \alpha \sigma \theta \varepsilon v \varepsilon \iota \omega ́ v \tau \omega \nu$
甲ขтóv；

＇Exovv $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota к о ́ \tau \eta \tau \alpha ~ \sigma \tau \eta \nu$
 $\tau \omega v$ 甲 $\tau \tau \dot{\sigma}$

Eívaı $\pi \alpha \rho \alpha ́ v о \mu \alpha ~ \gamma \varepsilon \omega \rho \gamma ı к \alpha ́ ~ \varphi \alpha ́ \rho \mu \alpha к \alpha ~$
27 18，0
$\mathrm{N}: \Sigma \nu \chi \vee o ́ \tau \eta \tau \alpha$

 $\varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ к \alpha \lambda \omega ́ v ~ \pi \rho \alpha \kappa \tau \iota \kappa \omega ́ v ~ к \alpha \tau \alpha ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \varphi v \tau о \pi \rho о б \tau \alpha \tau \varepsilon v \tau \iota к ต ́ v ~ \pi \rho о і ̈ о ́ v \tau \omega v . ~$
 $\varepsilon \varphi \alpha \rho \mu о \gamma \eta ์ s ~ \tau о \cup \varsigma ~ \alpha \pi o ́ ~ \tau о v \varsigma ~ \alpha \gamma \rho о ́ \tau \varepsilon \varsigma, ~ \tau \eta \nu ~ \alpha \sigma \varphi \alpha \lambda \eta ́ ~ \chi \rho \eta ́ \sigma \eta ~ \tau \omega v ~ \gamma \varepsilon \omega \rho \gamma ו к ळ ́ v ~ \varphi \alpha \rho \mu \alpha ́ к \omega \nu$

 $\alpha \delta \iota \alpha \theta \varepsilon \sigma i ́ \alpha \varsigma ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \gamma \varepsilon \omega \rho \gamma ı к о v ́ ~ \varphi \alpha \rho \mu \alpha ́ \kappa о v . ~ Т \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \pi \alpha \rho о v \sigma ı \alpha ́ \zeta о v \tau \alpha ı ~$ $\pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \sigma \tau \alpha ~ Г \rho \alpha \varphi ๆ ́ \mu \alpha \tau \alpha ~ 20-29 ~ к \alpha ı ~ \sigma \tau о \nu ~ П і ́ v \alpha к \alpha ~ 4 . ~$

 $\mu \circ v, ~ \psi \varepsilon \kappa \alpha ́ \zeta \omega ~ \kappa \alpha ı ~ \pi \lambda \varepsilon ́ v \omega ~ \pi о \lambda v ́ ~ к \alpha \lambda \alpha ́ ~ \tau о ~ \pi \rho o ́ \sigma \omega \pi о ~ к \alpha \iota ~ \tau \alpha ~ \chi \varepsilon ́ \rho เ \alpha ~ \mu о v » . ~$

 $4 \%(\mathrm{~N}=6)$ «о七 $\mu \pi$ о́тєऽ».

 «入íүо» каı то $6 \%(\mathrm{~N}=9)$ «каӨó ${ }^{2}$ оv».

 $\mu \varepsilon \tau \alpha ́ ~ \tau о v ~ \psi \varepsilon к \alpha \sigma \mu o ́ », ~ \tau о ~ 31 \% ~(N=46) ~ « \Pi \rho ı v ~ \pi \varepsilon \rho \alpha ́ \sigma \varepsilon ı ~ \chi \rho o ́ v o s ~ i ́ \sigma o s ~ \mu \varepsilon ~ \tau о ~ \delta ı \alpha ́ \sigma \tau \eta \mu \alpha ~$

 чєкабтıкó vүро́».
$\Sigma \tau \eta ~ \sigma ט v \varepsilon ́ \chi \varepsilon 1 \alpha, ~ \sigma \varepsilon ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \pi о ৩ ~ \chi \cup \theta \varepsilon i ́ ~ \sigma \tau о ~ \delta \varepsilon ́ \rho \mu \alpha ~ \gamma \varepsilon \omega \rho \gamma \iota \kappa o ́ ~ \varphi \alpha ́ \rho \mu \alpha \kappa о, ~ \alpha \pi \alpha ́ \nu \tau \eta \sigma \alpha \nu ~ \tau о ~$

 $\tau \eta \vee \varepsilon \pi \imath \kappa \imath v \delta v \vee o ́ \tau \eta \tau \alpha ́ ~ \tau \circ \cup »$.

 （ $\mathrm{N}=8$ ）« $\mathrm{N} \alpha \alpha \pi о \varphi \rho \alpha ́ \zeta о v \mu \varepsilon ~ \tau \alpha ~ \mu \pi \varepsilon \kappa ~ \varphi ט \sigma ळ ́ v \tau \alpha \varsigma ~ \mu \varepsilon ~ \tau о ~ \sigma \tau о ́ \mu \alpha » ~ к \alpha ı ~ \tau о ~ 49 \% ~(~ N=74) ~$ $\alpha \pi \alpha ́ v \tau \eta \sigma \varepsilon \sigma \omega \sigma \tau \alpha ́ «<́ \lambda \alpha \tau \alpha \pi \alpha \rho \alpha \pi \alpha ́ v \omega »$.

Ако́ $\mu \alpha$ ，та $\gamma \varepsilon \omega \rho \gamma \iota к \alpha ́ ~ \varphi \alpha ́ \rho \mu \alpha к \alpha ~ \alpha \pi о Ө \eta к \varepsilon v ́ o v \tau \alpha ı ~ к \alpha \tau \alpha ́ ~ \tau о ~ 62 \% ~(N=93) ~ « П \alpha ́ v \tau \alpha ~$

 $\varepsilon \mu \varepsilon \tau о ́, ~ \tau \rho \varepsilon ́ \mu о \cup \lambda о, ~ \delta v ́ \sigma \pi v o ı \alpha) ~ к \alpha \tau \alpha ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \gamma \varepsilon \omega \rho \gamma ı к о и ́ ~ \varphi \alpha \rho \mu \alpha ́ к о v », ~ \alpha \pi \alpha ́ v \tau \eta \sigma \alpha \nu, ~ \tau о ~$

 そєкоирабтві́тє»．

 76，67\％（N＝115）ó χ ．

¿тоıхвio	Katnүopia	N	f\％
К $\alpha \tau \alpha ́ \tau \eta \chi \rho \eta ́ \sigma \eta \gamma \varepsilon \omega \rho \gamma \iota \kappa \omega ́ v$ $\varphi \propto \rho \mu \alpha ́ \kappa \omega \nu \pi$ оı α عívaı η $\sigma \omega \sigma \tau \eta$ $\pi \rho \alpha к \tau \iota к$ ；	Пג＇́vต $\tau \alpha \chi \varepsilon ́ \rho ı \alpha \mu \circ v, \varepsilon \tau о \not \mu \alpha ́ \zeta \omega$ то $\psi \varepsilon \kappa \alpha \sigma \tau \iota \kappa o ́ ~ v \gamma \rho o ́, ~ \varphi о \rho \alpha ́ \omega ~ \mu \varepsilon ́ \sigma \alpha ~$ $\pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma ~ \kappa \alpha \imath ~ \psi \varepsilon \kappa \alpha ́ \zeta \omega$	46	31，0
	Етоща́らの то чєкабтıкó vүро́，甲оро́ $\omega \mu \varepsilon ́ \sigma \alpha \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha,$,	38	26，0

$\psi \varepsilon \kappa \alpha ́ \zeta \omega ~ \kappa \alpha ı ~ \pi \lambda \varepsilon ́ v \omega ~ \tau \alpha ~ \chi \varepsilon ́ p ı \alpha ~ \mu о v ~$
 чарна́кои каı афои́

48
32，0
$\alpha к о \lambda$ оиөŋ́бш $\tau \iota \varsigma ~ о \delta \eta \gamma і ́ \varepsilon \varsigma \tau \eta \varsigma$,廿عка̧́ю

Пробє́ $\chi \omega$ ต́бтє v $\alpha \mu \eta \nu \chi \cup \theta \varepsilon$ í то ча́рнако то́vต $\mu \circ v, \psi \varepsilon \kappa \alpha ́ \zeta \omega ~ к \alpha \imath ~$ $\pi \lambda \varepsilon ́ v \omega \pi \mathrm{o} \lambda \frac{́}{\kappa} \kappa \lambda \alpha \dot{\alpha}$ то $\pi \rho o ́ \sigma \omega \pi о$ ${ }_{\kappa} \alpha ı \tau \alpha \chi \varepsilon ́ \rho 1 \alpha \mu \circ v$

		15	10，0
	H μ д́бк α	68	45，0
	H ¢óp α^{\prime}	12	8，0
$\kappa \alpha \tau \alpha ́ \tau \eta \chi \rho \eta ́ \sigma \eta ~ \gamma \varepsilon \omega \rho \gamma ı \kappa ¢ ́ \nu$	Oı $\mu \pi$ о́т $¢ \varsigma$	6	4，0
¢орио́кळข			
	＇O $\tau \iota ~ \sigma \nu \sigma \tau \eta ́ v \varepsilon \tau \alpha \iota ~ \sigma \tau \eta \nu$ бибквvaбía тоv 甲ар μ ќкоv	39	26，0
	O $\mathrm{\sigma} \imath \mu \alpha \varsigma \pi \varepsilon \imath$ о $\varepsilon \pi \iota \sigma \tau \eta ́ \mu \circ v \alpha \varsigma-$ $\gamma \varepsilon \omega \pi$ о́vos π оv $\sigma v v \varepsilon \rho \gamma \alpha \zeta$ ¢́ $\mu \alpha \sigma \tau \varepsilon$	10	7，0

Käólov			
		9	6，0
Н $\chi \rho \eta \dot{\sigma} \eta \tau \omega \nu \mu \varepsilon ́ \tau \rho \omega \nu \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma$	＾íqo	15	10，0
$\kappa \alpha \tau \alpha \tau \eta \chi \rho \eta \sigma \eta \gamma \varepsilon \omega \rho \gamma ⿺ \kappa \omega \nu$ 	Mét $¢ 1 \alpha$	37	25，0
$\gamma v \omega \prime \mu \eta$ ба¢	Поди́	24	16，0
	Пápo π о λ ט́	65	43，0

$\Delta \varepsilon v \varepsilon \pi ı \tau \rho \varepsilon ́ \pi \varepsilon \tau \alpha ı \eta \pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \tau \eta \nu$
 үєюрүікои́ чарио́кот：
$\Gamma 1 \alpha 24$ ต́ $\rho \varepsilon \varsigma \mu \varepsilon \tau \alpha ́ \operatorname{\tau ov} \psi \varepsilon \kappa \alpha \sigma \mu o ́$

6543,0
 $\delta ı \alpha ́ \sigma \tau \eta \mu \alpha \alpha v \alpha \mu о \vee \eta ́ s ~ \pi \rho o ~ \tau \eta \varsigma$

боүкоцıбَ́ऽ $\pi о v ~ \alpha v \alpha \gamma \rho \alpha ́ \varphi \varepsilon \tau \alpha ı$
$\sigma \tau \eta \vee \varepsilon \tau ル \kappa \varepsilon ́ \tau \alpha$
Мદ́ $\chi \rho ı ~ v \alpha$ о $\lambda о \kappa \lambda \eta \rho \omega \theta \varepsilon i ́ ~ о ~$ $\psi \varepsilon \kappa \alpha \sigma \mu$ о́s

vүoó	15	0，0

П入દ́vov $\mu \varepsilon \mu \varepsilon$ д́ $\varphi \theta$ ovo vєคó то
ठє́риа каı акодоиӨои́цє 兀ıऽ $96 \quad 64,0$

$\gamma \varepsilon \omega \rho \gamma$ кои́ рарио́кот
Еа́v то 甲а́р $\mu \alpha к о ~ \delta \varepsilon v ~ \varepsilon i ́ v \alpha ı ~$

 үєшрүкко́ фо́риако：

$\begin{array}{lll}\sigma \alpha \pi \text { ои́vı } \kappa \alpha ı \lambda \alpha \mu \beta \alpha ́ v о ч \mu \varepsilon & 20 & 13,0\end{array}$
$\pi \rho о \lambda \eta \pi \tau \tau \kappa \alpha ́ \alpha \nu \tau i ́ \delta o \tau о$
Елıкоเvตvov́ $\mu \varepsilon \mu \varepsilon \tau \eta \nu \varepsilon \tau \alpha \iota \rho i ́ \alpha$
тоv $\gamma \varepsilon \omega \rho \gamma \not \kappa о$ и́ $\varphi \alpha \rho \mu \alpha ́ \kappa о v ~ \gamma ı \alpha$ v $\alpha \quad 9$ 6，0
$\varepsilon \nu \eta \mu \varepsilon \rho \omega \theta$ ои́ $\mu \varepsilon \gamma 1 \alpha \tau \eta \nu$
$\varepsilon \pi \imath \kappa ı v \delta v v o ́ \tau \eta \tau \alpha ́ ~ \tau o v$

$\begin{array}{lll}\alpha ́ v \varepsilon \mu о & \mu \varepsilon \varepsilon \pi \iota \imath ต ́ t ı o v s ~ & 27 \\ 18,0\end{array}$
$\psi \varepsilon \kappa \alpha \sigma \tau \eta ์ \rho \varepsilon \varsigma$
Поı $\alpha \pi$ о́ $\tau \alpha \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ \delta \varepsilon v$ عívaı $\quad \mathrm{N} \alpha$ калvíלov $\mu \varepsilon$ к $\alpha \tau \dot{\alpha} \tau \eta$ $\alpha \sigma \varphi \alpha \lambda \varepsilon i ́ \varsigma ~ \varepsilon \rho \gamma \alpha \sigma \iota \alpha \kappa \varepsilon ́ \varsigma ~ \pi \rho \alpha \kappa \tau \iota \kappa \varepsilon ́ \varsigma: ~ \delta \iota \alpha ́ \rho к \varepsilon ı \alpha ~ \tau о v ~ \psi \varepsilon к \alpha \sigma \mu о v ́ ~$
$\mathrm{N} \alpha \alpha \pi о \varphi \rho \alpha ́ \zeta о \nu \mu \varepsilon \tau \alpha \mu \pi \varepsilon \kappa \quad 8 \quad 5,0$
фибต́vтац $\mu \varepsilon$ то бто́ $\mu \alpha$
＇O $\lambda \varepsilon \varsigma$ ol $\alpha \lambda \lambda \varepsilon \varsigma \varsigma \alpha \pi \alpha \nu \tau \eta ́ \sigma \varepsilon 1 \varsigma ~ 74 ~ 49,0$

\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{} \& \& 93 \& 62，0 \\
\hline \& \begin{tabular}{l}
K \(\lambda \varepsilon \iota \delta \omega \mu\) ह́va \(\varepsilon \varphi\) ó \(\sigma o v\) عívaı \\

\end{tabular} \& 39 \& 26，0 \\
\hline \& \& 12 \& 8，0 \\
\hline \& \& 6 \& 4，0 \\
\hline \begin{tabular}{l}
Н \(\chi \rho \eta ́ \sigma \eta \tau \omega v \mu \varepsilon ́ \tau \rho \omega \nu \pi \rho о \sigma \tau \alpha \sigma \dot{\alpha} \alpha \varsigma \kappa \alpha \tau \dot{\alpha}\) \(\tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \gamma \varepsilon \omega \rho \gamma і к ळ ́ v ~ \varphi \alpha \rho \mu \alpha ́ к \omega v, ~ \theta \alpha\) \\
 \(\varepsilon \vee \eta \mu \varepsilon ́ \rho \omega \sigma \eta ~ \gamma 1 \alpha\) то \(\pi\) о́т \(\varepsilon \kappa \alpha ı \pi \omega \varsigma ~ v \alpha ~ \tau \alpha\) хр \(ә \not \mu о \pi о є \varepsilon і ́ \tau \alpha\) ：
\end{tabular} \& val
óqı \& 100
50 \& 67,0
33,0 \\
\hline \multirow[b]{3}{*}{ （弓а́ \(\lambda \eta\) ，то́бๆ \(\pi \rho \circ \varsigma \varepsilon \mu \varepsilon \tau о ́, \tau \rho \varepsilon ́ \mu о v \lambda о\) ， ภv́блvoı \(\alpha\) ка兀о́ тๆ \(\chi \rho \eta ́ \sigma \eta ~ \gamma \varepsilon \omega \rho \gamma ı к о v ́ ~\) фариа́кот；} \& \begin{tabular}{l}
\(\Sigma \tau \alpha \mu \alpha \tau \alpha ́ \tau \varepsilon \gamma 1 \alpha \lambda\) д́үo \(\tau \eta \nu \chi \rho \eta ́ \sigma \eta\) точ каı лívete vepó \\
П入દ́vยєє то \(\pi \rho о ́ \sigma \omega \pi о ~ \sigma \alpha \varsigma ~ \kappa \alpha ı\) к \(\alpha \theta \varepsilon \sigma \tau \varepsilon\)
\end{tabular} \& 30
21 \& 21,0
15,0 \\
\hline \& \& 16 \& 11，0 \\
\hline \& \begin{tabular}{l}
 \(\alpha \dot{\alpha} \lambda \omega \sigma \tau \varepsilon\) \(\sigma \varepsilon \lambda\) í \(о\) O \(\theta \alpha \varepsilon \lambda \varepsilon є \omega ́ v \alpha \tau \varepsilon\) \\
 そєкоирабтві́тє Паípvєтє тๆ \(\lambda \hat{\varepsilon} \varphi \omega v\) о \(\tau о\) кદ́vтро \(\delta \eta \lambda \eta \tau \eta \rho \stackrel{\alpha}{\sigma} \sigma \varepsilon \omega v\) \\
 \(\sigma \alpha \varsigma \pi \alpha ́ \varepsilon ı ~ \sigma \varepsilon\) ع́v人 vобокоиєío ŋ́ кย́vтро vүعía̧ \(\mu \alpha \zeta ̌ i ́ \mu \varepsilon \tau \eta \nu\) єтькє́та 兀оv фарио́коข лоv \(\psi \varepsilon \kappa \alpha ́ \sigma \alpha \tau \varepsilon\)
\end{tabular} \& 12
15
15

50 \& 8,0
10,0

35,0

\hline ＇ЕХєтє $\pi \alpha ́ \varepsilon ı ~ \sigma \tau о ~ v о б о к о \mu \varepsilon і ́ о ~ v ı ஸ ́ \theta о v \tau \alpha \varsigma ~$ $\alpha \delta ı \alpha \theta \varepsilon \sigma i ́ \alpha, \varepsilon \xi \alpha ı \tau i ́ \alpha \varsigma ~ \tau \eta \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma$ \& Nar \& 35 \& 23，33

\hline
\end{tabular}

үє $\omega \boldsymbol{\rho}$ кои́ $\varphi \alpha \rho \mu \alpha ́ к о v, \chi \omega$ рís $\tau \alpha$ $\kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \alpha \mu \varepsilon ́ \sigma \alpha \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha ; ;$
${ }^{\prime}{ }^{\prime} \chi_{1}$

 хрпбьнолотєітє:

 $\pi \rho \alpha \kappa \tau \iota \kappa \dot{\varepsilon} \varsigma \omega \varsigma \pi \rho о \varsigma \tau \eta \nu \varepsilon \varphi \alpha \rho \mu о \gamma \dot{\sim}$ тоvऽ;
 $\varepsilon v ต ́ v o v \tau \alpha \varsigma ~ \tau ו \varsigma ~ \varepsilon \rho \omega \tau \eta ́ \sigma \varepsilon ા \varsigma ~ \sigma \varepsilon ~ \kappa \alpha ́ \theta \varepsilon ~ \varepsilon v o ́ \tau \eta \tau \alpha ~ \mu \varepsilon ~ \chi \rho \eta ́ \sigma \eta ~ \tau о v ~ \mu \varepsilon ́ \sigma о v ~ o ́ \rho о v ~ \tau \mu ஸ ́ v . ~$

 $\sigma \cup \mu \mu \varepsilon \tau \varepsilon ́ \chi о \nu \tau \varepsilon \varsigma ~ \sigma \cup v o \lambda ı \alpha ́ \alpha ~ \sigma \tau о ~ \varepsilon \rho \omega \tau \eta \mu \alpha \tau о \lambda o ́ \gamma ı ~(t o t a l ~ s c o r e ~=~ 11,7 / 21), ~ \tau о ~ \sigma к о \rho ~ \pi о v ~$

 $\pi \rho \alpha \kappa \tau \iota \varepsilon \varepsilon ́ \varsigma ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta v ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ \tau \omega v \gamma \varepsilon \omega \rho \gamma \iota \kappa \dot{v} \varphi \alpha \rho \mu \alpha ́ \kappa \omega v$ (score op $\theta \dot{\omega} v \pi \rho \alpha \kappa \tau \iota \kappa \dot{v} v=$ 4,7/21).

 Ікаvолоџтוкє́ц»．

$2^{0} \varepsilon \rho \varepsilon v v \eta \tau \iota \kappa$ о́ $\varepsilon \rho \omega ́ \tau \eta \mu \alpha$

 $\chi \rho \dot{\sigma} \eta_{\tau} \tau \omega v$ 甲ото甲 $\alpha \mu \dot{\alpha} \kappa \omega v ;$

Н $\lambda_{ı к i ́ \alpha}$

 Ікаvотоџтıка́»．

Мор甲ютוко́ $\varepsilon \pi i ́ \pi \varepsilon \delta о$

 $\mu о \rho \varphi \omega \tau \iota \kappa o ́ ~ \varepsilon \pi i ́ \pi \varepsilon \delta о ~ \tau \omega v ~ \sigma \nu \mu \mu \varepsilon \tau \varepsilon \chi о ́ v \tau \omega v$ ．＇О $\pi \omega \varsigma ~ \varphi \alpha i ́ v \varepsilon \tau \alpha ı ~ \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega ~ к \alpha ı ~ \mu \varepsilon ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta$

 «AEI/TEI» ह́ $\chi \circ \cup v$ score $=13,8 / 21 \quad \delta \eta \lambda \alpha \delta \eta ́ ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \tau o v \varsigma ~ \varepsilon i ́ v \alpha ı « M \varepsilon ́ \tau \rho ı \alpha ~$ Ікаvотоџт七ко́».

K $\alpha \tau \alpha ́ \kappa$ ки́pıo $\varepsilon \pi \alpha ́ \gamma \gamma \varepsilon \lambda \mu \alpha \alpha \gamma \rho о ́ \tau \eta \varsigma$

'О $\pi \omega \varsigma ~ \varphi \alpha i v \varepsilon \tau \alpha ı ~ \pi \alpha \rho \alpha к \alpha ́ \tau \omega ~ к \alpha ı ~ \mu \varepsilon ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \tau \eta \varsigma ~ \pi \varepsilon v \tau \alpha \beta \alpha \theta \mu ı \alpha i ́ \alpha \varsigma ~ к \lambda i ́ \mu \alpha к \alpha \varsigma ~ L i k e r t, ~ o 七 ~$

 عíval «Mह́t $\rho 1 \alpha$ Iкаvотоџтıко́».

Ka入入ı ε pүعı α

То Гра́ $甲 \mu \alpha 34 \pi \alpha \rho о v \sigma ı \alpha ́ \zeta \varepsilon ı ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \sigma \varepsilon ~ s c o r e ~ \pi о v ~ \pi \rho о к о ́ \pi \tau о v v ~ \alpha v \alpha ́ ~ \tau \eta ~$

[^2]

То Гра́чๆ $\mu \alpha 35 \pi \alpha \rho о v \sigma i \alpha ́ \zeta \varepsilon ı ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \sigma \varepsilon ~ s c o r e ~ \pi о v ~ \pi \rho о к и ́ \pi \tau о v v ~ \alpha v \alpha ́ ~ \tau о ~ v о \mu o ́ ~$

Tо Гра́ $\varphi \eta \mu \alpha 36 \pi \alpha \rho о \cup \sigma ı \alpha ́ \zeta \varepsilon ı ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \sigma \varepsilon ~ s c o r e ~ \pi о v ~ \pi \rho о к ט ́ \pi \tau о v \nu ~ \sigma \varepsilon ~$
 фо́р $\mu к \alpha$.

 $\varepsilon \rho \omega \tau \eta \theta \dot{v \tau \varepsilon \varsigma ~ \pi о v ~ \varepsilon ́ \chi o v v ~ \lambda \alpha ́ ß \varepsilon ı ~ \pi ı \sigma \tau о \pi о i ́ \eta \sigma \eta ~ \varepsilon ́ \chi o v v ~ s c o r e ~=~ 9,73 / 21, ~ \delta \eta \lambda \alpha \delta ŋ ́ ~} \tau \alpha$
 $\lambda \alpha ́ \beta \varepsilon ı ~ \pi ı \sigma \tau о \pi о i ́ \eta \sigma \eta ~ \varepsilon ́ \chi o v v ~ s c o r e=9,28 / 21, \delta \eta \lambda \alpha \delta \eta ́ \tau \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \tau о \cup \varsigma ~ \varepsilon i ́ v \alpha ı ~ \varepsilon \pi i ́ \sigma \eta \varsigma$ «ムíyo Ікаvотоџтıка́».

$\Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$

 $\pi \rho о ́ \tau v \pi о ~ о \lambda о к \lambda \eta \rho \omega \mu \varepsilon ́ v \eta \varsigma ~ \gamma \varepsilon \omega \rho \gamma і ́ \alpha \varsigma$.

 $\alpha \nu \alpha \gamma \rho \alpha ́ \varphi \varepsilon \iota ~ \tau о v ~ \alpha \rho ı \theta \mu o ́ ~ \varepsilon ́ \gamma к \rho ı \sigma \eta ร ~ Y П А А Т ~ \kappa \alpha ı ~ \tau \eta ~ к \alpha \lambda \lambda ı \varepsilon ́ \rho \gamma \varepsilon ı \alpha ~ \gamma ı \alpha ~ \tau \eta \nu ~ о \pi о і ́ \alpha ~$ $\pi \rho о о \rho і ́ \zeta \varepsilon \tau \alpha \iota ~ v \alpha \chi \rho \eta \sigma \mu о \pi о ъ \theta \varepsilon i ́$.

 $\pi \alpha \rho \alpha \gamma \omega \gamma$ о́s.
 $\Omega_{\varsigma} \sigma \eta \mu \alpha \nu \tau \iota к о ́ \tau \varepsilon \rho о \quad \mu \varepsilon ́ \tau \rho о ~ \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma ~ \alpha v \alpha \delta \varepsilon i ́ \chi \tau \eta \kappa \varepsilon ~ \alpha v \theta \alpha i ́ \rho \varepsilon \tau \alpha ~ \eta ~ \mu \alpha ́ \sigma \kappa \alpha, ~ \chi \omega \rho i ́ \varsigma ~ v \alpha$

 Атонкки́я Пробтабías (МАП) «Па́ра Поди́» бףцаขтıки́.
 $\pi \rho о$ óv $\tau \omega v$, ol $\varepsilon \rho \omega \tau \eta \theta \varepsilon ́ v \tau \varepsilon \varsigma ~ \sigma \tau \eta \nu ~ \pi \lambda \varepsilon \iota ๐ \psi \eta \varphi i ́ \alpha ~ \tau \circ \cup \varsigma ~ \alpha \pi \alpha ́ v \tau \eta \sigma \alpha \nu ~ \sigma \omega \sigma \tau \alpha ́ ~ o ́ \tau ı ~ \sigma \varepsilon$ $\pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \pi о v ~ \chi \cup \theta \varepsilon i ́ ~ \sigma \tau о ~ \delta \varepsilon ́ \rho \mu \alpha ~ \gamma \varepsilon \omega \rho \gamma ı к о ́ ~ \varphi \alpha ́ \rho \mu \alpha к о, ~ \pi \lambda \varepsilon ́ v о ч \mu \varepsilon ~ \mu \varepsilon ~ \alpha ́ \varphi \theta о v o ~ v \varepsilon \rho o ́ ~ к \alpha ı ~$

 $\mu \varepsilon ́ \sigma \alpha \pi \rho о \sigma \tau \alpha \sigma i ́ \alpha \varsigma$.

 $\alpha \alpha \boldsymbol{\theta} \eta$ к $\alpha \iota ~ к \eta \pi \varepsilon \nu \tau \iota \kappa \alpha ́ . ~$

 $\nu \psi \eta \lambda$ д́т $\varepsilon \rho \frac{\varepsilon \pi i ́ \tau \varepsilon \delta о ~}{\gamma \nu \omega ́ \sigma \eta \varsigma . ~}$

 бо $\mu \ell \tau \varepsilon ́ \chi о \nu \tau \varepsilon \varsigma$.

 $\varepsilon \pi \mu о \rho \varphi \omega \theta \varepsilon i ́$.

 $\delta \varepsilon \iota \gamma \mu \alpha \tau \boldsymbol{\lambda \eta \psi i ́ \alpha \varsigma}$

 бт $\omega \mu \alpha \tau о \pi о џ \not \mu \varepsilon ́ v \eta ~ \delta \varepsilon \imath \gamma \mu \alpha \tau о \lambda \eta \psi i ́ \alpha ~(Ф \alpha \rho \mu \alpha ́ \kappa \eta \varsigma, ~ 2017) . ~ Е \pi i ́ \sigma \eta \varsigma, ~ \pi \rho о \tau \varepsilon i ́ v \varepsilon \tau \alpha ı ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~$
 (Га入óvๆ̧, 2012).

Bı $\beta \lambda ı \gamma \rho \rho \boldsymbol{\rho}$ í α

Cohen Louis \& Manion Lawrence \& Morrison Keith (2007). Research Methods in Education.
Creswell, J.W. (2013) Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 4th Edition, SAGE Publications, Inc., London.

Muijs, D., 2010. Doing quantitative research in education with SPSS. Sage.

 September 10, 2020, from http://repfiles.kallipos.gr/html_books/9863/mathModelBook.html

 Өєбба入оvíкך

Aktar, M. W., Sengupta, D., \& Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1.

Bagheri, A., Emami, N., Damalas, C. A., \& Allahyari, M. S. (2019). Farmers' knowledge, attitudes, and perceptions of pesticide use in apple farms of northern Iran: impact on safety behavior. Environmental Science and Pollution Research, 26(9), 9343-9351.

Commission, E. (2019). Integrated Pest Management (IPM). Retrieved August 10, 2021, from https://ec.europa.eu/food/plants/pesticides/sustainable-use-pesticides/integrated-pest-management-ipm_en

CropLife Europe. (2013). Classification and Labelling of Plant Protection Products . Retrieved August 6, 2021, from https://croplifeeurope.eu/pre-market-resources/classification-and-labelling-of-plant-protection-products/

Daqi, X. (2010). Pesticide Knowledge, Attitudes and Practices in China. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering.

Dara, S. K. (2019). The New Integrated Pest Management Paradigm for the Modern Age. Journal of Integrated Pest Management, 10(1). https://doi.org/10.1093/JIPM/PMZ010

Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., \& Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919.

Dunbar, S. J., \& Corran, A. J. (2007). Target-based research: A critical review of its impact on agrochemical invention, focusing on examples drawn from fungicides. Pesticide Chemistry, 65.

Ehi-Eromosele, C. O., Nwinyi, O. C., \& Ajani, O. O. (2013). Integrated Pest Management. Weed and Pest Control - Conventional and New Challenges. https://doi.org/10.5772/54476

EPA. (2020a). Basic Information about Pesticide Ingredients | US EPA. Retrieved August 10, 2021, from https://www.epa.gov/ingredients-used-pesticide-products/basic-information-about-pesticide-ingredients

EPA. (2020b). DDT - A Brief History and Status . Retrieved August 6, 2021, from https://www.epa.gov/ingredients-used-pesticide-products/ddt-brief-history-andstatus

Erdougan, O., Gökdougan, O., \& Others. (2017). Plant protection practices of the potato farmers in Nevșehir province. Derim, 34(1), 51-60.

European Parliamentary Research Service. (2019). Farming without plant protection products Can we grow without using herbicides, fungicides and insecticides? https://doi.org/10.2861/05433

Flint, M. L., \& den Bosch, R. (2012). Introduction to integrated pest management. Springer Science \& Business Media.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M.,.. others. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337342.

Kawasaki, K., \& Lichtenberg, E. (2015). Quality versus quantity effects of pesticides: joint estimation of quality grade and crop yield.

Kogan, M. (1998). Integrated pest management: historical perspectives and contemporary developments. Annual Review of Entomology, 43(1), 243-270.

Lechenet, M., Bretagnolle, V., Bockstaller, C., Boissinot, F., Petit, M.-S., Petit, S., \& Munier-Jolain, N. M. (2014). Reconciling pesticide reduction with economic and environmental sustainability in arable farming. PloS One, 9(6), e97922.

Lithourgidis, C. S., Stamatelatou, K., \& Damalas, C. A. (2016). Farmers' attitudes towards common farming practices in northern Greece: implications for environmental pollution. Nutrient Cycling in Agroecosystems, 105(2), 103-116.

Meite, F., Alvarez-Zaldivar, P., Crochet, A., Wiegert, C., Payraudeau, S., \& Imfeld, G. (2018). Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Science of the Total Environment, 616, 500-509.

Moser, R., Pertot, I., Elad, Y., \& Raffaelli, R. (2008). Farmers' attitudes toward the use of biocontrol agents in IPM strawberry production in three countries. Biological Control, 47(2), 125-132.

Nishantha, K. M. D. W. P., Sandika, A. L., Babu, A. G. C., Hettiarachchi, H. A. S. N.,

Pushpanjali, K., Abeytilakeratna, P. D., \& Nugaliyadde, M. M. (2016). Farmers' knowledge and attitudes on pesticide usage in vegetable cultivation in Sri Lanka. Tropical Agricultural Research and Extension, 19(2), 244. https://doi.org/10.4038/TARE.V19I2.5350

Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43.

Özerdougan, Ö., Oymak, S., Yuksel, B., \& Bakar, C. (2016). Plant Protection Products and Personal Protective Use Information, Attitude, Behavior of Turkish Farmers. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(1), 18-31.

Petrescu-Mag, R. M., Banatean-Dunea, I., Vesa, S. C., Copacinschi, S., \& Petrescu, D. C. (2019). What do Romanian farmers think about the effects of pesticides? Perceptions and willingness to pay for bio-pesticides. Sustainability, 11(13), 3628.

Pimentel, D., McLaughlin, L., Zepp, A., Lakitan, B., Kraus, T., Kleinman, P., ... others. (1993). Environmental and economic effects of reducing pesticide use in agriculture. Agriculture, Ecosystems \& Environment, 46(1-4), 273-288.

Rao, G. V. R., Rao, V. R., Prasanth, V. P., Khannal, N. P., Yadav, N. K., \& Gowda, C. L. L. (2009). Farmers' perception on plant protection in India and Nepal: a case study. International Journal of Tropical Insect Science, 29(3), 158-168.

Reach\&CLP. (2020). Labelling of plant protection products. Retrieved August 10, 2021, from https://www.reach.lu/en/clp/labelling/labelling-of-plant-protectionproducts/

Shetty, P. K., Murugan, M., Hiremath, M. B., \& Sreeja, K. G. (2010). Farmers’ education and perception on pesticide use and crop economies in Indian agriculture. Journal of Experimental Sciences, 1(1), 3-8.

Sulewski, P., Wkas, A., Kobus Pawełand Pogodzińska, K., Szymańska, M., \& Sosulski, T. (2020). Farmers' Attitudes towards Risk—An Empirical Study from Poland. Agronomy, 10(10), 1555.

Watterson, A. (1990). Pesticide health and safety policy in the UK: a flawed and limited approach? Journal of Public Health Policy, 11(4), 491-503.

Waxman, M. F. (1998). The agrochemical and pesticides safety handbook. CRC Press.

Паро́ $\rho \tau \eta \mu \alpha-\mathbf{E \rho \omega \tau \eta \mu \alpha \tau о \lambda o ́ \gamma ı о ~}$

$\Delta \eta \mu о ү р а ч і к$

ERROR: invalidfont
OFFENDING COMMAND: .type42execchar
STACK:
0.0
0.036

94
/alphatonos
42
-dictionary-

[^0]:

[^1]: Гра́чпна 1: Н入ıкік

[^2]:

